

Conference Proceedings
January 19-21, 2006, Montreal, Canada

Editor
Ashraf Gaffar

Papers and Academic Presentations

CUSEC 2006 Montreal, CANADA

 i

CUSEC 2006

Canadian University
Software Engineering Conference

Engineering
Useful
Software

January 19-21, 2006
Montreal, Canada

CUSEC 2006 Montreal, CANADA

 ii

Platinum Sponsor

www.microsoft.com

As an industry leader in the design and development of innovative computer
technology, Microsoft’s efforts are reflected in a range of technological advances
in areas such as operating systems, software development platforms and tools,
Web services, knowledge management, natural language processing, privacy,
security, and networking.

Imagine having the resources to influence tomorrow’s reality today, and having
fun while you do it. That’s Microsoft. Right now, we’re looking for people who
think big and dream big – people a lot like you. If you’re ready to discover just
how far your talents can take you, we invite you to Microsoft. From there, how
far you go is up to you.

CUSEC 2006 Montreal, CANADA

 iii

Silver Sponsors

 www.ea.com www.gameloft.com

Friend Sponsors

 www.pearsoned.ca/highered www.oreilly.com/

Academic Sponsors

 http://www.encs.concordia.ca/ http://www.mcmaster.ca/

Department of

Computer Science and Software Engineering
http://www.cs.concordia.ca/

CUSEC 2006 Montreal, CANADA

 iv

Table of Contents

CUSEC Committee Members 1

Opening Remarks 2

Chair’s Remarks 3

Keynote Speakers

Modular Concurrency
Dr. Peter Grogono 8

Ruby on Rails: The Whirlwind Tour
David Heinemeier Hansson 9

Creating Passionate Users
Kathy Sierra 10

Fight the Traffic
Chad Fowler 11

A Panacea or Academic Poppycock: Formal Methods Revisited
Connie Heitmeyer 12

Presentations, Tutorials, and Papers

I Academic Presentations

Recursive Software Engineering for Tomorrow’s Software Engineers
Nancy Acemian 18

Model-Based Development of Advanced User Interfaces:
Integration of Audio-visual Interaction and Task Specification
Peter Forbrig 19

Software Testing as a Social Science
Cem Kaner 20

Empirical Studies in Software Engineering: A step closer to Usefulness.
Ahmed Seffah 21

CUSEC 2006 Montreal, CANADA

 v

II Corporate Presentations

A Software Developer’s Experience with Agile
Patrick Ng, Aditya Thakur, Gang(George) Zhu Motorla 24

Eclipse Performance
Chris Laffra, Rational Performance Engineering Team, IBM 25

Agile-Helping You Deliver Useful Software
François Beauregard, Research and Development, Pyxis Technologies 26

OSGi: the open source and standard platform of choice for restrained devices
Louenas Hamdi, Researcher, SAP Labs Canada, SAP 27

Software Engineering in the Video Game Industry
Alex Hyder, Development Director – NHL ’07, Electronic Arts Montreal , EA 28

Testing in a Creative Environment
Karine Roy, SQA manager, Autodesk 29

III Tutorials

Considering Ajax
Chris Laffra, Rational Performance Engineering Team, IBM 31

Fundamental Issues in Software Metrics
Cem Kaner, Florida Institute of Technology, Florida, USA 32

Software Start-up, Laurent Seiter 33

Static Analysis Using the Eclipse Test and Performance Tools Platform
(TPTP), Orlando Marquez 34

IV Papers

1- Software Modeling and Methodologies

Task Models and Remote Usability Testing
Gregor Buchholz, Peter Forbrig, Anke Dittmar, Andreas Wolff, Daniel Reichart 38

How Useful are Your UML Models?
Pankaj Kamthan 44

CUSEC 2006 Montreal, CANADA

 vi

2- Software Methodologies

Commonalities and Differences in Agile and User-Centered-Design Methodologies
M. F. Anwar, A. Seffah 50

Engineering the Requirements in User-Centered Design and Agile Development
Methodologies
M. F. Anwar, 56

3- Design Tools

Tool Support for an Evolutionary Design Process using XML and User-Interface Patterns
Peter Forbrig, Andreas Wolff, Anke Dittmar, Daniel Reichart 62

4- Multimedia

From Requirements Analysis to Architecture Evaluation of a Ubiquitous Multimodal
Multimedia Computing System
Manolo Dulva Hina1, Chakib Tadj, Amar Ramdane-Cherif 70

5- Society and Education

Open Source Software in Software Engineering Education: No Free Lunch
Pankaj Kamthan 80

How Valid is the Notion of “Information Society”
M. Ben Mousa 86

CUSEC 2006 Montreal, CANADA

 1

CUSEC Committee Members

Chair

Conference Advisor

Finance

Corporate Sponsorship

Keynote, Tutorial and
Corporate Presentations

Papers and Academic
Presentations

Promotion

Logistics, Website and
Registration

John Jonathan Kopanas

Dr. Peter Grogono

Mark Pavlidis

Neeraj Mathrani

Ahmed Kamel

Ashraf Gaffar

Michel Parisien

Nadia Chaouch

Special Thanks to:

Audrey Girouard, École Polytechnique de Montréal

Ethel Macasias, McMaster University

CUSEC 2006 Montreal, CANADA

 2

Opening Remarks

The Canadian University Software Engineering Conference (CUSEC) is happy to celebrate its
5th anniversary. All this would not have been possible without your constant support. So, first
we would like to say thank you. Thank you for your ever growing interest in the field of
Software Engineering.

The broad view of the conference remains the same as before: to examine the future of
software engineering.

The conference brings together researchers, academics, industry practitioners and students in
order to share ideas, expand engineering knowledge, and introduce well-established
techniques. The idea of the conference stemmed from the need of passionate software
engineers to unite with others to promote software engineering; the desire to attract bright
minds to research software engineering; and the demand for bringing people together to discuss
how theory is implemented. Therefore, our priority is the promotion and development of
software engineering as a new discipline. Offering students, as well as teachers and
professionals, a conference that combines purely scientific considerations with the industrial
practical applications in the effervescent field of software engineering is what distinguishes us
from other conferences.

The conference is synonymous to new knowledge and personal enrichment. It is an occasion
for passionate presenters to communicate their thoughts and works to an equally passionate
audience. It also enables our corporate partners to make their companies known, to meet future
employees, and to be associated to a product of quality, innovation, and reliability.

The chosen theme this year is “Engineering Useful Software”. The conference has traditionally
included corporate, academic and paper presentations. This year we will also incorporate
tutorials, labs, as well as Career Fair and Corporate Expos.

The organizing team would like to welcome you to CUSEC 2006, hoping we enjoy it all
together until the very last minute.

Sincerely,
Ashraf Gaffar
On behalf of the CUSEC Team

CUSEC 2006 Montreal, CANADA

 3

Chair’s Remarks

We are celebrating our 5th year anniversary this year, but it seems like only yesterday that I
was chairing our first conference. A conference that almost never happened.

Five days before our inaugural event we only had four people registered. We could of packed
up our bags and chalked this one up as a loss, but we did not want to prove our critics right.
Many people said that students, especially undergraduate students, had no business organizing
an academic conference. What thing everyone should remember is that the more nay-sayers
you have, the more you should realize that you are headed in the right direction.

With only five days left, we worked night and day coming up with new marketing material,
distributing it, making class presentations, getting deals done with organizations to subsidize
tickets, whatever we could think of we did and at the end of the day we got over 100 people to
sign-up in less then five days.

Every single person on the founding team learned an important life lesson. If you really want
something bad enough… it’s yours. Not only did the founding members of CUSEC learn a
valuable lesson about life, they gave something back to the software engineering community in
Canada. Something that is worth more then the lessons they learnt, it is unfortunate though
because I don’t think any of them realize it – they gave us CUSEC.

There was nothing inherently special about any of the founding members, myself included.
They were your regular students, going to school, trying to better themselves. What brought
these unsuspecting students together though was a passion, a passion for software engineering,
a passion that they wanted to share with their peers.

If you are reading this, it is because you have something in common with all of CUSEC’s
founding members. And like those members, you can leave your mark. It takes many
volunteers to put CUSEC together. Volunteers who give their scarce free time to CUSEC. But I
can guarantee you, if you ask any of them, none of them would trade their CUSEC experience
for the world.

The opportunity to bring your favorite software engineers from around the world together
under one roof. To be apart of something that most people thought to be impossible for
undergraduate students. To make new friends, friends that will always occupy a special part in
your heart.

CUSEC has created a special experience for Software Engineering students. As the field of
Software Engineering grows, your thought, ideas, and discussions here at CUSEC will help to
shape its future. Not only through the interaction with speakers who are leaders in the field, but
with each other – the future leaders in the field.

CUSEC 2006 Montreal, CANADA

 4

Every student leaves university with a degree. But not all of them can say they left their mark.
If organizing CUSEC is not for you, the only thing I ask you to do is take a couple of minutes,
hours or even days, reflect on how you want to be remembered, make a plan, and go for it. If
you don’t think you owe it to yourself, then you at least owe it to the people around you.
If you do decide to be apart of CUSEC all I want to do is leave you with one thought. Your
reward is priceless, but if you don’t pay attention at just the right time you might miss it. The
first day of CUSEC stop and watch. Look at all those smiling faces… could you ask for
anything more.

Your Friend and Fellow Software Engineer,
John Kopanas

(I want to take this opportunity to mention the founding members, they gave us much more
then they could of ever realized at the time: Chae Dickie-Clark, Madelaine Tang, Marc
Abbyad, Chadi Freeha, Jason, Jacinthe Gagnon, Dr. Peter Grogono and John Kopanas.)

CUSEC 2006 Montreal, CANADA

 5

CUSEC 2006 Montreal, CANADA

 6

Keynote Speakers

CUSEC 2006 Montreal, CANADA

 7

CUSEC 2006 Montreal, CANADA

 8

Modular Concurrency

Peter Grogono

Professor and Associate Chair, Concordia University

Abstract:
Software development moves onwards and upwards to ever-higher levels of abstraction,
further and further away from the code that actually runs on the hardware. This is a good thing
– the more details we can hide the better – but it conceals the unfortunate fact that modern
programming languages match neither current software requirements nor the underlying
architecture. Significant contributions to concurrency and encapsulation, made during the
1970s and 1980s, have been lost in the excitement of programming with objects and networks.
Programming languages remain the basic tool of the software engineer and they must provide
the reliability, security, and performance that modern applications require. In the talk, I will
propose a new programming paradigm designed to meet the needs of the next generation of
software. The key features of the paradigm are strong encapsulation, full concurrency,
malleability, and scale-free design.

Biography:
Peter Grogono built his first computer when he was fifteen. After obtaining a mathematics
degree from Cambridge, he accepted a post as a mathematician but quickly replaced the
Monroe calculator with FORTRAN. After spending a few years dabbling in operating systems,
engineering, electronic music, and accounting systems, he joined Concordia University as a
systems analyst. In 1984, he moved from the Computer Center to the Computer Science
Department, where he is now Professor and Associate Chair. He introduced the undergraduate
Software Engineering program in 1998 and was its director until 2004. He is currently
developing a new masters program in Software Engineering, to be introduced in Fall 2006. As
well as software engineering, his current interests include distributed computing, graphics, and
artificial life.

CUSEC 2006 Montreal, CANADA

 9

Ruby on Rails: The Whirlwind Tour

David Heinemeier Hansson
2005 Goggle and O’Reilly’s Open Source Best Hacker Award

Recipient
Ruby on Rails Founder

Abstract:
Get 1st class tickets to tour with Ruby on Rails. A glimpse behind the headlines, a look at the
fundamental shift that this Yet Another Framework is bringing to the world of web-application
development. See the beautiful of domain-specific languages in full effect and learn about the
holy cows we had to slaughter to enjoy the view.

Biography:
A product of Danish Design from the Winter of '79. Grew up, graduated, and still live in the
city of Copenhagen. I've been writing about it all since the Reboot conference in 2001 inspired
me to start Loud Thinking. Since '96, I've been working with the net with varying levels of
success in the fields of game journalism, marketing, project management, design, and
development. These days its mostly about development, though.

As a partner in 37signals, I helped transform the venerable design shop into a product
company. Basecamp, Backpack, and Ta-da List are all applications launched since the shift
came into effect in February 2004. I did the programming for all of them.
In July 2004, I released the framework Rails (also known as Ruby on Rails) from the work on
these applications. I've been managing that as an open-source movement ever since. And
lately, quite a few people has been taking notice. That means a bunch of speaking engagements
including RubyConf, FISL, Reboot, OSCON, JAOO, and more. In August 2005, I won the
Best Hacker of the Year award at OSCON from Google and O'Reilly.

In addition to Rails, I've also created the most downloaded Ruby end-user application. It's a
small, light wiki called Instiki. I'm no longer actively developing on it, but still proud of how
far I made it go. I even used it to write my final project towards my bachelor's degree in
Business Administration and Computer Science at the Copenhagen Business School.
I believe in change, ignorance (my own), love, and the power of motivation.

CUSEC 2006 Montreal, CANADA

 10

Creating Passionate Users

Kathy Sierra
Co-Creator of Head First Series

Finalist for a Jolt Software Development award
Founder of Javaranch.com

Abstract:
What do game designers, neurobiologists, and filmmakers know about creating passionate
users? How can we create not just user-friendly, but brain-friendly software? How can we help
inspire users at a deeper emotional level?
By reverse-engineering passion, we learn the key attributes shared by the things people are
passionate about. And if we can figure out how to incorporate some of these attributes into our
software, APIs, and documentation, we can create applications that can inspire users to love
and ultimately evangelize what you create. Thanks to the latest research in brain science, we
now have a much clearer path for creating user experiences that can turn even the most
mundane task into an engaging interaction.
Whether you’re building commercial applications, developer APIs and frameworks, or end-
user documentation and training, user/brain-friendliness can make the difference between
frustrated users and those who can’t wait to see what you come up with next.

Biography:
Kathy Sierra has been interested in the brain and artificial intelligence since her days as a game
developer (Virgin, Amblin’, MGM). She is the co-creator of O’Reilly’s bestselling Head First
computer book series (winner of the Jolt Cola/Software Development Magazine award in 2004,
and named to the Amazon Top Ten Computer Books of the year for the past two years). She’s
also the founder of one of the largest programming community web sites, javaranch.com. A
former master trainer for Sun Microsystems, she spent several years teaching engineers lthe
latest Java technologies. Most recently, she’s been writing the “Creating Passionate Users”
blog and book (published by O’Reilly in early 2006).

CUSEC 2006 Montreal, CANADA

 11

Fight the Traffic

Chad Fowler
Author of

My Job Went To India
(And All I Got Was This Lousy Book)

Abstract:
Despite what you may have heard on the news, it’s a great time to be a software developer.
Opportunities abound, but most of us just aren’t looking for them. The sky is falling, but it’s
nothing to complain about. We’ll take the tumultuous environment of global software
engineering and turn it into a playground for the passionate programmer. When is Starbucks
better than your locally owned favorite? What can we learn from Wal-Mart? Why was Apple
stupid enough to get into a commodity market like MP3 players?

Biography:
Chad Fowler has been a software developer and manager for some of the world’s largest
corporations. He recently lived and worked in India, setting up and leading an offshore
software development center. He is cofounder of Ruby Central, Inc., a non-profit corporation
responsible for the annual International Ruby Conference, and is a leading contributor in the
Ruby community. Chad is a contributor and editor for numerous books and is author of the
recently released, My Job Went to India (and all I got was this lousy book): 52 Ways to Save
Your Job and the upcoming Rails Recipes.

CUSEC 2006 Montreal, CANADA

 12

A Panacea or Academic Poppycock:
Formal Methods Revisited

Connie Heitmeyer

Head of the Software Engineering Section of the Naval Research
Laboratory’s Center for High Assurance Computer Systems,

Chief Designer of the SCR

Abstract:
Most programmers avoid formal methods and their support tools due to the perceived difficulty
of applying them. This talk describes the many different roles that formally based tools can
play in debugging, verifying, and validating software and software artifacts, with emphasis on
tools for specifying and analyzing software requirements.

Tools for requirements construction and analysis are of special interest because capturing and
documenting requirements presents one of the most difficult problems in software
development. The talk also describes the presenter’s recent experience and lessons learned
in specifying software components of NASA’s International Space System and in the formal
specification and verification of a security-critical cryptographic system. The talk concludes by
identifying some open problems in software engineering that require new research.

Biography:
Connie Heitmeyer is the chief designer of the SCR (Software Cost Reduction) toolset, a
formally based set of tools which has been distributed to more than 200 organizations in
academia, industry, and government and applied to many real-world systems. The head of the
Software Engineering Section of the Naval Research Laboratory’s Center for High Assurance
Computer Systems, she recently served as co-program chair for MEMOCODE 2005, the 3rd
International Conference on Formal Methods in Hardware/Software Co-Design, and as co-
chair of the 2005 Experience Reports Track at the International Conference on Software
Engineering. She is a member of the editorial boards of the ACM Transactions on Software
Engineering and Methodology, the Requirements Engineering Journal, and the Journal on
Software and System Modeling. Her research interests are in formal specification and formal
analysis of software and system requirements and of high assurance software systems. She is
also very interested in transferring formal methods technology and tools to software
practitioners.

CUSEC 2006 Montreal, CANADA

 13

CUSEC 2006 Montreal, CANADA

 14

Presentations,
Tutorials, and Papers

CUSEC 2006 Montreal, CANADA

 15

CUSEC 2006 Montreal, CANADA

 16

I
Academic Presentations

CUSEC 2006 Montreal, CANADA

 17

CUSEC 2006 Montreal, CANADA

 18

Recursive Software Engineering for
Tomorrow’s Software Engineers

Nancy Acemian

Concordia University, Montreal, Canada

Abstract:
How can computers and software be used better to teach software engineers? By having
software engineers develop adjunct learning and teaching environments for each other to
complement conventional in-class learning. Tools such as lecture videos coupled with
annotated Power Point slides (Video Streaming/Flash), Java applets illustrating program
segments and randomly generated on-line exercises (PHP/MySQL) are some of the learning
tools available off the web to students of an Object Oriented Programming course at
Concordia. The environment was developed by Concordia SOEN students and continues to be
maintained by one of the original student developers. This presentation will describe the
project, the development, and the role of Software Engineering in this in-house project.

Biography:
Nancy Acemian teaches programming in the Department of Computer Science and Software
Engineering at Concordia University since 2000. Previous to this appointment, she taught
Computer Science at Marianopolis College in Montreal for 11 years. She holds a BA of
Commerce with a Major in Mathematics from McGill University, Montreal, and an MA in
Computer Science from Concordia University where she is also pursuing a PhD in Educational
Technology. Her research area is in the visualization of code, to aid students “see” the
sequence of programming codes, and to develop better learning outcomes. Another objective is
to produce effective learning tools for different learner styles which can be used in class and
on-line. Nancy Acemian is also assists the Concordia University Centre for Teaching and
Learning Services (CTLS) facilitate workshops and seminars on teaching for faculty and PhD
students.

CUSEC 2006 Montreal, CANADA

 19

Model-Based Development of Advanced User
Interfaces:

Integration of Audio-visual Interaction and
Task Specification

Peter Forbrig

Rostock University, Rostock, Germany

Abstract:
The use of techniques from the fields of visualization, natural language and task
modeling provides a new complementary style of human computer interaction, where the
computer becomes an intelligent, active and personalized collaborator. In this talk we present
an adaptive, platform independent integration strategy of appropriate state-of-the-art
visualization, speech and task modeling techniques with a special focus on interfaces for
mobile devices. Different XML-based languages are used for this purpose. The talk will also
address the potential synergy among several interaction technologies and how they can be
combined together to build a new generation of human-computer interfaces. The implemented
system is illustrated using an automated maintenance support case study.

Biography:
Dr. Forbrig is a full professor of software engineering at the University of Rostock in
Germany. He got his PhD in compiler construction (1980) and his habilitation in software
engineering methods (1987). Besides working in industry from 1981 to 1998 he was appointed
as a full professor in 1994. His research interests include classical software engineering like
UML, design patterns and case tools. Additionally, he is interested in combining task-based
development methods with object-oriented once. His research combines human computer
interaction with software engineering. Dr. Forbrig published several papers on software
engineering and HCI. He published several textbooks in German and he is the author of a
German UML book.

Dr. Forbrig is vice chair of IFIP TC 13.2 and was visiting professor at the University of
Cottbus (Germany, 1993), University of Linz (Austria, 1997), University of Potchefstroom
(South Africa, 2000) and Concordia University Montreal (Canada, 2003).

CUSEC 2006 Montreal, CANADA

 20

Software Testing as a Social Science

Cem Kaner

Florida Institute of Technology, Florida, USA

Abstract:
Software development groups spend hugely on testing. Some companies (e.g. Microsoft)
assign equal numbers of testers and programmers to projects. Despite the large role on real
projects, the place of testing in the computer science or software engineering curriculum is
usually trivial. Suppose we added more testing and training to SE students. What should we
add?

One exciting vision brings testing closer to the programming mainstream. I like this vision. It
leads to cleaner code, better test tools, skilled test architects, friendly project team dynamics.
Consider another vision. Imagine a computer program as a communication among people and
machines, distributed in space and time. Programming focuses on communication between the
person and the machine. What about the person-to-person issues? I like Jerry Weinberg’s
definition of quality: Quality is value to some person. Along with the pragmatism (greater
quality if and only if higher value), it highlights the subjectivity of quality. Different
stakeholders, different values, different quality.

When we search for clues to better and more relevant testing in the needs, preferences,
valuation and conflicts among stakeholders, in complaint patterns and market reactions to our
previous products and our competitors’, when we use human performance measures as
indicators of project status and product quality, when we use intuition or formal tools to find
patterns in the overwhelming mass of conflicting information about the products we are
testing, we are applying the social sciences, not programming.

Imagine the tester as an investigator, someone who uses psychological/ economic/
anthropological/ forensic tools and insights to expose quality-related information about the
product under test. What would her job look like? What would distinguish strong work from
weak? What should she study, what might we teach to help her along?

Biography:
Cem Kaner is a Professor of Software Engineering at the Florida Institute of Technology and
an attorney focused on the law of software quality. He is senior author of several books,
including Testing Computer Software, and of online open courseware at
www.testingeducation.org. His undergraduate and doctoral studies were at Brock, McMaster,
York and Windsor.

CUSEC 2006 Montreal, CANADA

 21

Empirical Studies in Software Engineering:
A step closer to Usefulness

Ahmed Seffah

Concordia University, Montreal, Canada

Abstract:
Software testing has always been one of the main pillars of software engineering. Testing
comes in several flavors, from testing lines of codes and correctness of algorithms, all the way
to the correctness and completeness of requirements. In this talk, we focus on testing software
with people, namely end users, to make sure the application will meet their needs and will
work correctly in its context. Empirical testing can greatly contribute to user acceptance of the
software while reducing development time and training costs.

Biography:
Ahmed Seffah’s interests are at the intersection of human-computer interaction and software
engineering, with an emphasis on human-centered software engineering, empirical studies,
theoretical models for quality in use measurement, as well as patterns as a vehicle for capturing
and incorporating empirically valid design practices in software engineering practices. He is a
co-founder of the Usability and Empirical Studies Lab and the founder and chair of the
Human-Centered Software Engineering Research Group at Concordia University.

CUSEC 2006 Montreal, CANADA

 22

II

Corporate Presentations

CUSEC 2006 Montreal, CANADA

 23

CUSEC 2006 Montreal, CANADA

 24

A Software Developer’s Experience with

Agile

Patrick Ng, Aditya Thakur, Gang (George) Zhu
Motorla

Abstract:
The best known and oldest software development lifecycle is the waterfall model, where
developers follow the steps of requirements gathering, analysis, design, coding and testing in
order. Recently, a project team at the Motorola Global Software Group Canada centre in
Montreal experimented with an “Agile” process for the development of a new software feature.
The development itself presented a number of challenges, such as the significant enhancement
of the software functionality, an aggressive schedule, and a number of technical unknowns. As
part of the project, the team utilized the following Agile techniques: prototyping, just enough
documentation, pair programming, iterative and incremental development, refactoring,
constant integration, constant communication, test first development and automated testing. In
the end, the team observed increased productivity, boosted creativity, and lower cost of quality.
In this presentation we will investigate the reasons behind these improvements as well as share
the team’s experience in practicing Agile, as compared to traditional, non-Agile, methods.

CUSEC 2006 Montreal, CANADA

 25

Eclipse Performance

Chris Laffra
Rational Performance Engineering Team,

IBM

Abstract:
To scale the Eclipse platform to a large product, plug in developers will
t some point have to study both their CPU performance and their memory consumption.
Eclipse offers non-traditional performance challenges that have to do with the adoption of a
large framework. It has been wisely coined that every Computer Science problem can be
solved by adding one more layer of abstraction.

The various Eclipse abstractions such as plugins, extension points, and features, allow
developers to grow Eclipse to an unprecedented size. Some products include over 2,000
plugins. However, profiling tools typically only show low-level details that make it hard to
rediscover the abstractions. For instance, one single API call in JDT may unwittingly result in
millions of method calls if the workspace is large. Stack traces of 500-600 deep are not
exceptional.

How do we profile such large applications and make sure we don’t get lost? In addition to
performance, memory consumption is highly relevant for Eclipse applications. Most Eclipse
applications, including IDE extensions, are just in the business of converting data into different
formats, such as from XML into a binary registry, Java source into class files, JSPs into Java
and HTML, etc.

Data conversion is often an expensive process, and plugin authors quickly resort to using a
cache to play the space/time tradeoff game. Monitoring Java heap growth and doing blame
analysis is far from trivial. It can be quite difficult to discover who owns a certain string when
the heap measures 600MB and contains millions of objects. What we will go over in this
session is a set of publicly available profiling tools, and see how they can be used to profile
Eclipse and analyze its heap usage and detect leaks. Various live demos will be given on real
Eclipse scenarios and we will see how these profiling tools help address complexity. We will
show how certain design decisions influence how we can trace activity at runtime, and how
profiling tools can be enhanced to benefit better from them.

Biography:
Chris Laffra was born in The Netherlands and obtained his MsC at the Vrije Universiteit of
Amsterdam in 1988 and a PhD at the Erasmus University of Rotterdam in 1992. At both IBM
T.J. Watson Research Center and Morgan-Stanley, Chris worked on tools for user interfaces,
component infrastructures, program analysis, debugging, visualization, compression, and

CUSEC 2006 Montreal, CANADA

 26

optimization. He led the OTI Amsterdam lab for 3.5 years, working on WebSphere Studio
Device Developer®. At IBM Canada’s lab in Ottawa he worked on the border between Java™
runtime environments and Eclipse (and co-authored The Official Eclipse 3.0 FAQs). Currently,
Chris works at IBM RTP to improve RAD/RSA performance.

Agile–Helping you Deliver Useful
Software

François Beauregard

Research and Development,
Pyxis Technologies

Abstract:
The software development industry has a very bad track record in delivering useful software to
organizations. In its widely referred research ‘The CHAOS Report (1994)’, the Standish Group
has found that on successful projects, 45% of the functionalities developed are never used and
another 19% are rarely used. Therefore, the potential for improvement is huge.

During this presentation, we will identify some potential causes of such poor performance and
then explore how Agile software development methodologies can help deliver more useful
software. Topics such as requirements gathering, incremental funding method (IFM), project
metrics and collaboration between project stakeholders and development teams will be
discussed.

CUSEC 2006 Montreal, CANADA

 27

OSGi: The Open Source and

Standard Platform of Choice for Restrained
Devices

Louenas Hamdi

Researcher, SAP Labs Canada
SAP

Abstract:
OSGi offers a component/service oriented computing environment for networked services.
Enabling a networked device with an OSGi framework adds the capability to manage the life
cycle of the software components in the device from anywhere in the network without ever
having to disrupt the operation of the device. Software components are libraries or applications
called bundles that can dynamically discover and use other components thru service sharing
mechanism.

OSGi offers many standard component interfaces that are available for common functions like
configuration, device access manager, universal plug and play, wire admin and many more.
The OSGi specifications are broadly applicable in many areas, and especially to restrained
environments, because it is a thin standard layer that allows multiple components to efficiently
and securely cooperate in a single Java virtual machine. Unlike other Java technologies like
JMX or MIDP, the OSGi service platform allows bundles to supply code as well as services to
the environment. In restrained environments sharing code is important because it allows
libraries with shared functionality to be exposed to all the allowed applications and therefore
reduce the code redundancy and the applications size.

The presentation will illustrate a step by step application-building example and will show some
very practical and real life examples using OSGi.

Biography:
Louenas Hamdi joined the SAP Research Team in Montreal on January 1st, 2004. He is
currently involved in different projects within the SAP Smart Items Research Program.
Louenas received his Master degree in Software Engineering from ETS (Ecole de Technologie
Supérieure), Montreal, Canada. He also holds an Engineering diploma in Computer Science
from Université de Tizi-Ouzou, Algeria. His research interests are in the domains of: Smart
Items, Mobility, Enterprise Applications, Context Awareness, RFID, OSGi.

CUSEC 2006 Montreal, CANADA

 28

Software Engineering
in the Video Game Industry

Alex Hyder

Development Director – NHL ’07
Electronic Arts Montreal

Abstract:
Modern software engineering has its roots in the military world, and even today is most
rigorously applied to the development of mission-critical systems in the aerospace and telecom
industries. The games industry has traditionally followed an extremely informal approach to
software development, driven by the need for creativity and speed of development. However
while, many of the drivers for process formalism such as schedule predictability, quality, and
cost of rework apply to game development, others, such as requirements traceability and
lifecycle costs do not. As a result, there is some debate among game developers as to what kind
of software engineering practices should be followed in the game industry. This presentation is
a result of the author’s personal transition from the formal practices used in the manned space
program to the fast and flexible world of game development. It will examine some of the
specific challenges of game development, and will discuss some of software engineering
practices currently being adopted at Electronic Arts.

Biography:
Alex completed his B. Eng (1983) and M. Eng (1989) at McGill University in mechanical
engineering, specializing in robotics. For the next 5 years, he worked as a software developer
at the NASA Johnson Space Center, developing software simulation tools for the analysis of
spacecraft dynamics and robotic systems as part of the Space Shuttle mission planning process.
That was followed by several years in the telecom industry, first as a real-time software
developer at Nortel, then as a project manager at Motorola’s Montreal Software Center. Alex
has worked in the game industry since 2002, managing game teams developing for the
Playstation2, Xbox, GameCube, PSP, and PC. His most recent projects include Medal of
Honor European Assault and SSX On Tour. He is currently responsible for NHL ’07 PS2,
Xbox, PC and PSP.

CUSEC 2006 Montreal, CANADA

 29

Testing in a Creative Environment

Karine Roy
SQA manager

Autodesk Media & Entertainment

Abstract:
Many people think of testing jobs as an entry level position and a step to move towards the job
their really want to do. Many will think anybody can become a tester, as it is just a matter of
knowing the product under test. Many believe testers should not be involved in the
development life cycle, or should only be involved at the end. Many engineers see testers as a
necessary pain, but have very little desire to develop a closer relationship with them, as they
don't see the value. Many believe we should invest in development more than we invest in
testing. Are those beliefs true, what if they weren't????

In this presentation Karine will talk about those beliefs that surround testers in their day to day
lives, and how overcoming those beliefs could lead to positive results.

Biography:
Working in the Film, Video and 3D industry since 1995, Karine has held a variety of software
testing positions ranging from core tester, automation tester, automation lead and QA team
lead. For the last few years she's been working as a QA manager at Softimage Avid and, since
2004, at Autodesk, in their Media and Entertainment division. Karine is leading a team of over
60 test specialists, the majority of which being full time employees. She also manages remote
team in India.

Autodesk's M&E products range from 3D applications to 2D color grading, effects and editing
as well as video compression and encoding. The various projects Karine has been involved in
create and deliver authoring tools for creative professionals making Computer Generated
Imagery (CGI) for feature films, commercials and video games.

CUSEC 2006 Montreal, CANADA

 30

III
Tutorials

CUSEC 2006 Montreal, CANADA

 31

Considering Ajax

Chris Laffra
Rational Performance Engineering Team,

IBM

Abstract:
Lately, there is a lot of interested in Ajax (Asynchronous JavaScript plus XML).Various Ajax
applications demonstrate a much more interactive rich client experience than traditional web
browsing. Using Ajax, new and innovative aggregation and presentation techniques can be
deployed in an unprecedented fashion. Inspired by Alex Bosworth's list of Ajax mistakes, I
compiled a list of 20 attention areas to look at when considering Ajax techniques for a website.
Some of them are potential problem areas, such as breaking the "back" button, causing
unhappy off-line experiences, not showing progress, loosing bookmarkability, and raising
security concerns. Most of them, however, are indicating the high potential Ajax has. Of
course, the presentation itself will be done in a browser, using Ajax techniques as much as
possible. The talk can be found at http://eclipsefaq.org/chris/ajax. I have experimented a lot
with Ajax in the past, doing things such as enhancing Google maps to find a new home in
Raleigh near a good school, and generating the online version of the Eclipse FAQs at
http://www.eclipsefaq.org/chris/faq/indexb.html.

Biography:
Chris Laffra was born in The Netherlands and obtained his MsC at the Vrije Universiteit of
Amsterdam in 1988 and a PhD at the Erasmus University of Rotterdam in 1992. At both IBM
T.J. Watson Research Center and Morgan-Stanley, Chris worked on tools for user interfaces,
component infrastructures, program analysis, debugging, visualization, compression, and
optimization. He led the OTI Amsterdam lab for 3.5 years, working on WebSphere Studio
Device Developer®. At IBM Canada’s lab in Ottawa he worked on the border between Java™
runtime environments and Eclipse (and co-authored The Official Eclipse 3.0 FAQs). Currently,
Chris works at IBM RTP to improve RAD/RSA performance.

CUSEC 2006 Montreal, CANADA

 32

Fundamental Issues in Software Metrics

Cem Kaner
Florida Institute of Technology, Florida, USA

Abstract:
What are we measuring when we collect and compute software metrics? What gives us
confidence in these measurements? What are the risks of taking them or using them?
Measurement is very important for software projects. How else can we tell whether we are
likely to meet a schedule, ship an acceptable product, overrun the budget? How else can we tell
that this programmer needs help and that programmer is far enough ahead to provide it? What
else could provide a basis for estimating the size and difficulty of a project and plan the
staffing, schedule and cost accordingly?

Measurement is very important for software projects. And so, when I say that many of the
popular metrics in use today have little theoretical basis, that software engineering is decades
behind other fields in its application of basic measurement theory, and that measurement
programs are probably so rare in industry because so many have been abandoned after doing
more harm than good—some people respond the way they’d respond to someone who argues
that because doctors sometimes commit malpractice, you should never seek
medical services.

That’s not what this talk is about. I’m not slamming medicine. I’m saying, “Don’t buy snake
oil. Or if you do, don’t expect it to cure what ails you.” I’m not slamming metrics. I’m saying,
“Don’t use unsound measures. Or if you do, use them with skepticism and great care. And
work on creating and validating some replacements.”

This tutorial throws down a challenge to students who are preparing to apply software
engineering on the job or research it in their dissertations. You /will/ take and report
measurements. You’ll have to. The question is, will you know enough about the measures you
use to be credible and add value.

Biography:
Cem Kaner is a Professor of Software Engineering at the Florida Institute of Technology and
an attorney focused on the law of software quality. He is senior author of several books,
including Testing Computer Software, and of online open courseware at
www.testingeducation.org. He undergraduate and doctoral studies were at Brock, McMaster,
York and Windsor.

CUSEC 2006 Montreal, CANADA

 33

Software Start-up

Laurent Seiter

Abstract:
What is a startup ? Why start one ? What are the basic ingredients to make it successful, or a
failure ? All startups are not the fairytales of the Internet Bubble and everybody does not
become Google overnight.

This tutorial coming from a real-life experience will offer hints and directions to answer the
above questions. We will travel through the different layers of the cake, from the
original idea to the motivating impulse, the context, the lifestyle, the business plan, the
funding, the morale, the marketing and PR, the recruitment, how to deal with customers, bank
managers, incubators, investors and associates, and other delights of the startup experience.
Attendees with a project will come out with a clearer view of what to expect from a software
engineer point of view: the tutorial is closer to a report from the field than to a theoretical
MBA course.

Biography:
Laurent Seiter has 14 years of experience in software development in several industries
(telecoms, logistics, stock exchange, groupware) and research labs (CERN, CRIM). He has
been the co-founder of a software startup in 2000 and has created other entities in the music
industry.

CUSEC 2006 Montreal, CANADA

 34

Static Analysis Using the Eclipse Test and
Performance Tools Platform

(TPTP)

Orlando Marquez

Abstract:
This talk introduces the static analysis framework and code review components
built into the Eclipse Test and Performance Tools Platform (TPTP). The static analysis
framework offers users a consistent interface through which all forms of analysis can be
manipulated. For the developer, TPTP supplies a simple API for creating analysis providers,
developing rules and presenting analysis results to the user. This session will initially provide a
quick walk-through of the new user interface components including a discussion of the design
considerations that help improve the user experience when analyzing resources in the Eclipse
workspace. This overview will demonstrate the Java and C/C++ code review providers used to
analyze sample source code to generate and view results. Focus will then shift to an
introduction of the supplied API and will include two examples to illustrate the steps needed to
integrate an existing third-party analysis tool and to create new rule provider from first
principles. This will include detailed information describing which extension points are
available, how to define rule categories, rules, results and viewers. Following the provider
discussion, the focus will shift to the Java code review provider supplied in TPTP. Though this
provider supplies approximately 70 rules for common J2SE issues, it also offers developers a
trivial API for augmenting the rule set with new custom rules. Examples taken directly from
the open source TPTP code review rules will quickly walk developers through some basic
JDT-based API’s available for Java rule creation. This knowledge will then be used to write a
simple rule that can be plugged into the TPTP Java coded review engine. Finally, this tutorial
will describe some of the more advanced features of rule writing such as rule templates,
variables, detail providers and quick fix support.

Biography:
Orlando Marquez is a Software Engineering student from the University of Waterloo. As part
of his last internship, he worked at the IBM Ottawa Lab developing Application Analysis
features for Rational Software Architect and related products. He also contributed greatly to
the Eclipse Test and Performance Tool Platform (TPTP) Static Analysis tooling. His current
main areas of interest are source code and runtime analysis.

CUSEC 2006 Montreal, CANADA

 35

CUSEC 2006 Montreal, CANADA

 36

IV
Papers

CUSEC 2006 Montreal, CANADA

 37

Task Models and Remote Usability Testing

Gregor Buchholz, Peter Forbrig, Anke Dittmar, Andreas Wolff, Daniel Reichart
University of Rostock

Department of Computer Science
Albert-Einstein-Str. 21

18051 Rostock, Germany
Tel: +49 381 4987624

grbuc@informatik.uni-rostock.de

ABSTRACT
This paper discusses the integration of remote usability testing
into a model-based approach of software development. The
development process consists of a sequence of interactive model
transformations. It is shown how first prototypes of interactive
systems, which in our approach are animated models or
interactively generated applications can help to capture
requirements and how the models evolve to the final interactive
system. We also demonstrate how to enable usability experts to
use this model-based approach for testing the usability of software
in early development stages based on the tasks users have to
perform. A tool is presented, which visualizes the activities of a
test user based on the models. The tool supports remote usability
tests, which even can be performed on mobile devices.

Categories and Subject Descriptors

D.2.1 Requirements/Specifications

General Terms
Languages

Keywords
Model-based Design, Remote Usability Tests, Patterns

1. INTRODUCTION
To meet the purpose a software system is intended for is a main
challenge in software development and it is commonly accepted
that the development process has to start with the analysis of the
problem domain users work in. There are some discussions
whether one has to start with analyzing objects, tasks, or
interactions but at the end there is a common understanding of the
importance of all aspects of the problem domain. It is also more
and more accepted that the users’ view is most important for the
software under development. A user-centered development
process perfectly supports this idea.
Model-based development of software systems has become more
and more popular. Even if it is up to now not used very
extensively it is an attractive process with proven record of
success, especially in the context of developing multiple user
interfaces. There are approaches focusing first on object models
like the model-driven architecture of UML [24]. However, we
follow task-based approaches like ADEPT [26], CTTE [4] or
Cameleon [1]. Typically, such systems are used to model existing
or envisioned tasks. They help to understand the tasks a user has
to perform in more detail by allowing simulations. Additionally,

systems like TERESA [22] support the development of user
interfaces.
Our System DiaTask [19] follows a similar approach. Based on
task-, object-, user- and environment-models, interactive systems
are developed. The next chapter will describe this approach in
further details. Afterwards opportunities for remote usability tests
will be sketched and at the end we will discuss reached and
further goals.

2. MODEL-BASED DEVELOPMENT
We strongly believe that software engineers and user interface
designers have to base their work on the same models. In Figure 1
these models are depicted on the left hand side. Here the device
model is a representative of a general environment model. These
models are as well the basis for the development of the soft-ware
developed by software engineers as those for the software of user-
interface experts.
Furthermore, we consider software development as a sequence of
transformations of models that is not performed in a fully
automated way but by humans using interactive tools.

Figure 1, Model-based development process model

Our work is especially focused on methods and tools supporting
transformations by patterns. The transformation of class diagrams
by patterns using Rational Rose is described in [11]. In [20], the
idea of supporting the development of task models by patterns is
shown.
In the following we demonstrate the application of our ideas to a
small example of developing a mail management system. Figure 2
is the result of the interviews with forthcoming users. It
demonstrates how task models look like.

 38

Figure 2, Task model for the mail management system

According to the task model of Figure 2, a user may either read
his mail, or write a new one. To read his mails, he has to select a
specific mail from a list that is generated and presented to him by
the application. Once he has selected a mail its content is
displayed. Select and display are consecutive subtasks of an
iterative tasks that can be cancelled at any time.
Writing mails is modeled in a similar manner. After a user decides
to write a mail he has to enter the iterative task produce mail,
where he is requested to compose a new mail and, after having
finished this, the application sends it away. This sub-task may
also be cancelled at any time.
In addition to the classical temporal operations like >> - enabling,
||| - in parallel, [8] – alternative a new operation symbol # is
introduced. It represents the “instance iteration” operation. In
contrast to the classical iteration * it allows to start a new iteration
before the old one is finished. Thus, it is a specification feature,
which is very helpful in a lot of applications.
With one of our tools DiaTask [19] we are able to develop a
dialog graph that represents the navigation structure of the
interactive systems. Such a graph is based on the previous
specified task model.
A dialog graph consists of a set of nodes, which are called views
and a set of transitions. There are five types of views: single,
multi, modal, complex, and end views. A single view is an
abstraction of a single sub-dialog of the user interface that has to
be described. A multi view serves to specify a set of similar sub-
dialogs. A modal view specifies a sub-dialog, which has to be
finished in order to continue other sub-dialogs of the system.
Complex views allow a hierarchical description of a user interface
model. End views are final points in (sub-) dialogs. Each view is
characterized by a set of (navigational) elements. A transition is a
directed relation between an element of a view and a view.
Transitions reflect navigational aspects of user interfaces. It is
distinguished between sequential and concurrent transitions. A
sequential transition from view v1 to view v2 closes the sub-
dialog described by v1 and activates the sub-dialog, which
corresponds to v2. In contrast, v1 remains open while v2 is
activated if v1 and v2 are connected by a concurrent transition.
Figure 3 shows the graphical notation for the different types of
views and transitions.
Unlike to TERESA [22] the dialog graph is the result of a design
process and not the result of automatic transformations. DiaTask
allows to assign several different dialog graphs to one task model.
Figure 3 demonstrates the example our mailing system with single
views (main window “Mail Client”, write mail), multiple views

(read mail) and the end view (end). The screenshot is produced
using the eclipse [9] plug in for DiaTask.

Figure 3, Dialog graph for the management system of mails

There are concurrent transitions from “mail client” to “read mail”
and “write mail”. This means that “main window” stays open and
can be activated by a mouse click.
Multiple views are able to instantiate several instances. In the
example of a mail system this means that users can read several
mails in parallel. Multiple views go together with concurrent
transitions. Figure 4 illustrates the abstract prototype generated
from the model of figure 3. It captures a situation where one mail
is read and another one is written. The “main window” is active
and as well pressing the corresponding button can activate end,
read mail or write mail.
Figure 4 demonstrates an abstract user interface of the mail client
application.

Figure 4, Canonical abstract prototype of Fig. 3 in animated

mode
The abstract user interface shown in Figure 4 is automatically
generated from the specification of the dialog graph and behaves
according to the temporal relations defined in the task model. It is
already a very good instrument to improve the communication
with users during the requirements analysis phase. Unfortunately
it has the drawback of a very abstract interface. We intended to
improve this situation. It was our idea to generate the abstract user
interface (e.g. Fig. 4) in a language which can be picked up by a
GUI-editor for improvements. We decided to use XUL [32] for

 39

this purpose. This user-interface description language was
introduced with the Mozilla project [15] and part of the success
story. Based on an existing GUI plug in for eclipse an editor for
XUL was developed. This editor is able to replace existing
elements by other ones. In this way, the abstract user interface can
be improved to a more useful one while keeping up the reference
from the GUI elements to tasks. We are especially working on the
problem of how patterns can be used for this purpose. Possible
tool support is discussed in [20].
The interpreter of the models, which controls the animation,
recognizes the existence of improved windows and includes them
into the animation process. In this way, the user is able to have a
look at a user interface, which is already a candidate for the final
interactive system.

Figure 5, Designed GUI for Select & Read

Details of the GUI-editor can be found in [28] and [29]. During
simulation our system offers a view on the prototype of the user
interface and a view on the animated task model. Figure 6
demonstrates how the animated task model is visualized. Basic
tasks (represented by squares) with green circles can be executed.
Red crosses represent a status of the task that allows no execution
because of restrictions (e.g. temporal relation between tasks). A
blue tick signals the successful execution of a task.

Figure 6, Visualization of an animated task model

3. REMOTE USABILITY TESTING
Testing and improving the usability of software is a time
consuming process. Test scenarios have to be developed, test
users have to be hired and experienced usability experts have to
observe the behavior of the test user. Sometimes it is very
difficult to have test user and the usability expert as test
supervisor at the same time at the same place. This holds
especially true for mobile applications.
Furthermore, users may behave differently depending on whether
they are working in a traditional usability laboratory or in their
usual environment. Sometimes only the presence of the test
supervisors influences the test users by executing their tasks.
These problems can be reduced by remote usability tests. This
kind of test allows the test user and the test supervisor to work at
different places and even at different times. This is not new but
based on our model-based development approach new
opportunities are created.

3.1 Software Architecture
It is possible to run a model-based system on a client-server
architecture. In this way, models are interpreted on a sever and
the results are delivered to the clients. Figure 7 gives an
impression of how this architecture looks like.

Server

• Task model
• Dialog graph
• UI specification
• Interpreter

Figure 7, Software architecture

The architecture of Figure 7 creates new opportunities for remote
usability test because in addition to videos and the capturing of
screens the status of the interpreted models can be observed.
Some features of our TMSClient and TMSServer (TMS = Task
Model System) will be discussed within the following paragraph.

3.2 Tool Support for Remote Usability Tests
Based on our model-based approach, a TMSServer was
implemented which allows remote usability tests in early software
development stages. The server is able to interpret models, to
receive state change events from the client the user is working on
and to send the results to the client (see Figure 8).

 40

Figure 8, User interface for the test user

The usability expert uses another client software that uses the task
state change notifications to give an impression of the test by
visualizing the actual state of the execution of the task-model
instance, which is presented in Figure 9. We do not want to
comment to all the information presented but would like to draw
the attention of the reader to the left side of the screen shot.

Figure 9, User interface (animated task model) for the

usability expert
The user interface of Figure 9 was technically produced based on
a Java implementation, where parameterized cascaded observers
were used to observe the states of the models on the server.
At the moment he usability expert has to watch the changes of the
task model instance. He has to observe whether the test user
behaves as expected or whether tasks are activated, which have
nothing to do with the actual test scenario. In the latter case
something is wrong with the system and a usability problem
might be found. The table in the center lists the state change
events of the model’s subtasks. Currently, there are five states a
task can have: enabled, running, done, finished and skipped.
Analyzing these state changes is intended to assist the usability
expert in finding problem situations that occur during a test. In the
future there will be further tool support.
One can imagine that predefined scenarios are stored and as long
as the test user acts according to these scenarios nothing happens.
Otherwise the usability expert is informed that something has
happened that was not expected. It is his decision what to do next.
Another idea is to compare the data collected during the tests of
different user interfaces for the same task model. Thereby, the
efficiency of the interfaces can be measured and optimized.

Of course, it is not the intention to replace all other kinds of
observations by this method but it is intended to use this concept
additionally.

4. SUMMARY AND OUTLOOK
Within this paper the integration of usability tests into model-
based development (Figure 1) process was proposed. This process
model postulates the idea of having the same models as basis of
the work of software engineers and usability engineers. This fact
is very important for us. Even if not every detail of the models is
important for both groups of the different developers there have to
be common models as a basis of the development process. This is
one big first step towards bridging the gap between software
engineering and usability engineering. The approach has the
following advantages:

• Software engineers are focused on the tasks a user has to
perform, on the object he has to manipulate and on the work
situation (context of work). In this way it is guaranteed that
the developed interactive systems are user-centered.

• Usability experts are involved in the specification of models
in a very early development stages. In this way they can
influence the implementation process of the software
engineers.

• Usability evaluation is supported during all stages of the
development process based on the existing models. Especially
remote usability testing can be supported.

We have been using our approach in different small projects.
However, up to now we did not use models for projects of large
scale. Currently we are working in a project for a mobile
maintenance system together with 8 partners from university and
9 partners from industry, which follows our model-based
approach. The project started in 2004 and will be finished in
2006. We are sure that the demonstrated approach will lead to a
successful result of the project and that we will gain further
knowledge to improve our toll for remote usability test in a
mobile environment.

5. REFERENCES
[1] Cameleon: http://giove.cnuce.cnr.it/cameleon.html.
[2] Clerxkx, T.; Luyten K.; Conix, K.: The Mapping Problem

Back and Forth: Customizing Dynamic Models while
preserving Consistency, Proc. TAMODIA 2004, 33-42.

[3] Constantine L.L: Canonical Abstract Prototypes for Abstract
Visual and Interaction Design, in Jorge J. A. et. al (Eds):
Proceedings DSV-IS 2003, LNCS 2844, Springer Verlag,
Berlin, 2003, 1-15.

[4] CTTE: The ConcurTaskTree Environment.
http://giove.cnuce.cnr.it/ctte.html.

[5] Deakin, N.: XUL Tutorial. XUL Planet. 2000.
[6] Dittmar, A., Forbrig, P.: The Influence of Improved Task

Models on Dialogues. Proc. of CADUI 2004, Madeira, 2004.
[7] Dittmar, A., Forbrig, P., Heftberger, S., Stary, C.: Tool

Support for Task Modelling – A Constructive Exploration.
Proc. EHCI-DSVIS’04, 2004.

[8] Dittmar, A., Forbrig, P., Reichart, D.: Model-based
Development of Nomadic Applications. In Proc. of 4th

 41

[19] Reichart, D.; Forbrig, P.; Dittmar, A.: Task Models as Basis
for Requirements Engineering and Software Execution, Proc.
of. Tamodia, Prague, 2004, 51-58.

International Workshop on Mobile Computing, Rostock,
Germany, 2003.

[9] Eclipse: http://www.eclipse.org.
[20] Sinnig, D., Gaffar, A., Reichart, D., Forbrig, P., Seffah, A.:

Patterns in Model-Based Engineering, Proc. of CADUI
2004, Madeira, 2004.

[10] Elwert, T., Schlungbaum, E.: Dialogue Graphs – A Formal
and Visual Specification Technique for Dialogue Modelling.
In Siddiqi, J.I., Roast, C.R. (ed.) Formal Aspects of the
Human Computer Interface, Springer Verlag, 1996. [21] Teuber, C.; Forbrig, P.: Modeling Patterns for Task Models,

Proc. of Tamodia 2004, 91-98. [11] Forbrig, P.; Lämmel, R.; Mannhaupt, D.: Patterns-oriented
develpment with Rational Rose, Rational Edge, Vol. 1, No. 1,
2001.

[22] TERESA: http://giove.cnuce.cnr.it/teresa.html.
[23] UIML Tutorial, http://www.harmonia.com.

[12] Limbourg, Q., Vanderdonckt, J.: Addressing the Mapping
Problem in User Interface Design with USIXML, Proc
TAMODIA 2004, Prague, 155-164.

[24] UML: http://www.uml.org.
[25] UsiXML: http://www.usixml.org.
[26] Wilson, S.; Johnson, P.; Kelly, C.; Cunningham, J.;

Markopoulos, P.: Beyond Hacking: A Model-Based
Approach to User Interface Design, in Proc. of HCI’93, pp.
217-231.

[13] López-Jaquero, V.; Montero, F. ; Molina, J.,P.; González, P.:
A Seamless Development Process of Adaptive User
Interfaces Explicitly Based on Usability Properties, Proc.
EHCI-DSVIS’04, 2004, 372-389.

[27] Wilson, S.; Johnson, P.: Bridging the generation gap: From
work tasks to user interface design, In Vanderdonckt, J.
(Ed.), Proc. of CADUI 96, Presses Universitaires de Namur,
1996, 77-94.

[14] Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.:
Derivation of a dialog model from a task model by activity
chain extraction. In Jorge, J., Nunes, N.J., e Cunha, J.F.
(ed.), Proc. of DSV-IS 2003, LNCS 2844, Springer, 2003.

[28] Wolff, Andreas, Ein Konzept zur Integration von
Aufgabenmodellen in das GUI-Design , Master Thesis,
University of Rostock, 2004.

[15] Mozilla.org: XUL Programmer’s Reference 2001.
[16] Paterno, F.; Mancini, C.; Meniconi, S: ConcurTaskTrees: A

Diagrammatic Notation for Specifying Task Models, Proc.
Interact 97, Sydney, Chapman & Hall, 1997, 362-369. [29] Wolff, A.; Forbrig, P.; Dittmar, A.: Reichart, D.: Linking

GUI Elements to Tasks – Supporting an Evolutionary Design
Process, accepted for TAMODIA 2005, Gdanks. [17] Paterno, F., Santoro, C.: One Model, Many Interfaces. In

Proc. of the Fourth International Conference on Computer-
Aided Design of User Interfaces, Kluwer Academics
Publishers, 2002, 143-154.

[30] Wolff, A.; Forbrig, P.; Dittmar, A.: Reichart, D.:
Development of Interactive Systems Based on Patterns,
accepted for the workshop “Development of Interactive
Systems Based on Patterns” at INTERACT 2005, Rome. [18] Puerta, A.R. and Eisenstein, J. Towards a General

Computational Framework for Model-Based Interface
Development Systems. Proc. of the 4th ACM Conf. On In-
telligent User Interfaces IUI’99 (Los Angeles, 5-8 January
1999). ACM Press, New York (1999), 171–178.

[31] XIML: http://www.ximl.org.
[32] XUL: http://www.xul.org.

 42

http://www.usixml.org/

 43

How Useful are Your UML Models?
Pankaj Kamthan

Department of Computer Science and
Software Engineering

Concordia University, Montreal,
Quebec, Canada H3G 1M8

 1-(514)-848-2424-3000

kamthan@cse.concordia.ca

ABSTRACT
As modeling becomes pervasive in software development, the
question of the quality of resulting artifacts arises. A framework to
address the pragmatic quality of UML artifacts based upon
notions from semiotics, graph drawing, and cognition is presented.
Feasibility of the quality goal and corresponding criteria is
emphasized and the mechanisms of achieving them are identified.
Examples that compromise pragmatic quality of UML artifacts are
given.

Categories and Subject Descriptors
D2. Software Engineering; H5.m. Information interfaces and
presentation (e.g., HCI): Miscellaneous.

General Terms
Measurement, Documentation, Design, Economics, Human
Factors, Standardization, Languages, Verification.

Keywords
Comprehension, Software Model Quality, Pragmatics, Visual
Modeling Languages.

1. INTRODUCTION AND BACKGROUND
The Unified Modeling Language (UML) [2] is a standard
language of the Object Management Group (OMG) for structural
and behavioral modeling in a variety of domains.
In recent years, UML has begun to play an increasingly central
role in requirements and design phases of model-driven adaptive
software process environments such as Extreme Programming
(XP) and the Unified Process (UP). Therefore, addressing the
issue of quality early is crucial from the point of view of control
and prevention of problems that can propagate into later stages. If
left unattended, these artifacts may, for example, fail to
communicate their purpose, could be misleading to their
stakeholders, or be virtually non-modifiable. This would
undermine the basic philosophy of UML to unify multiple
notations that were potentially threatening interoperability among
tools and communicability among engineers, and could adversely
affect further acceptance and growth of UML.
The previous efforts [1,6,10,18] on tackling the quality in UML
artifacts suffer from one or more of the following issues: the
approach is apparently not systematic, the focus is more on the
solution than the problem, the coverage is limited to a specific
diagram type and/or a specific quality characteristic, or the trade-
offs of proposed solution(s) are not discussed.

In this paper, we address the issue of quality in UML artifacts
based on the ideas from semiotics [12], and its application to
information quality [11]. The work presented here is in the
direction of and extends that in [8].
In semiotics, there are six levels for analyzing symbols: physical,
empirical, syntactic, semantic, pragmatic, and social levels. Our
focus here is on the pragmatic level, which is the practical
knowledge needed to use a language for communicative purposes.
We propose a framework as a first step towards understanding,
assessing, and ensuring pragmatic quality of UML artifacts.
The rest of the paper is organized as follows. In Section 2, we
present the architecture of the framework for addressing the
pragmatic quality of UML models, and provide a detailed
description of its components on decomposition. Finally, in
Section 3, we conclude with challenges and avenues for future
research.

2. A UML PRAGMATIC QUALITY
FRAMEWORK
We adopt the following general methodology as the foundation of
the framework (Table 1):

1. Identify the pragmatic quality goal;
2. Since a goal is at a too high level to be directly addressed,

decompose it further into a manageable list of specific
criteria (internal and external attributes of the artifact);

3. State the mechanism(s) for achieving the criteria. A
mechanism can correspond to one or more criteria.

Table 1. The outline of the UML pragmatic quality framework

(where the symbol <C> stands for comprehension)

Goal Criteria Mechanisms

<C> External
Attributes

Internal
Attributes

Assurance and
Evaluation Tools

Feasibility Analysis

The goal-oriented decomposition is inspired by other efforts such
as the Goal/Question/Metric (GQM) method [17], widely-used in
organizational measurement programs. However, one of the
criticisms of the GQM method is that it does not incorporate
feasibility. The attribute-level decomposition is similar to that in
traditional software quality models [7].
We now describe the components of the framework in detail.

 44

2.1 Feasibility Analysis
UML artifacts are often the means to the end and their quality
control carries extra cost (in form of time, effort, and resource
commitment) on top of considerations for software quality. We
also need to prioritize and make trade-offs among the criteria and
corresponding mechanisms. Therefore, an economic,
organizational, and technical feasibility analysis is necessary for a
realistic realization of the quality goal. We view feasibility as a
manifestation on all aspects of the framework in order to make it
practical.
Further discussion of techniques for feasibility analysis are
beyond the scope of this paper. We simply state any feasibility
analysis ultimately requires making decisions to prioritize among
the given options. To help achieve that, Decision Trees, Influence
Diagrams, Conjoint Analysis, Analytical Hierarchy Process
(AHP), and Quality Function Deployment (QFD), are some of the
commonly used techniques.
Any feasibility analysis, however, should also be in agreement
with the organizational emphasis on decision support for software
engineering in general.

2.2 Goal
Pragmatics is concerned with choosing from among the given
possibilities in the contextual usage of symbols to express a single
meaning. In doing so, there is only one goal of pragmatic quality
of a UML artifact: comprehension by stakeholders (producers and
consumers, including users).
For a non-trivial artifact, it is not realistic that each stakeholder
will be able to comprehend each statement made by the artifact in
its entirety at all times. This motivates the adoption of feasible
comprehension [11].

2.3 External Attributes
The external attributes are (are non-necessarily mutually
exclusive) artifact properties as perceived by its stakeholder. The
ones we view as relevant are: Domain-UML-Stakeholder
Suitability, User Preference, Clarity, Visual Coherence,
Simplicity, Familiarity, Interoperability, and Standardization.
A UML artifact created by a stakeholder addresses a (problem or
solution) domain in software. Therefore, the suitability of the
domain to UML and vice versa, and the stakeholder knowledge of
UML, are critical. Our experience has shown that users may
prefer one diagram type to the other for the sake of understanding
even though they may be semantically equivalent for most
purposes, like the use of UML Sequence Diagrams over
Communication Diagrams. The significance of clarity (legibility
of graphic or readability of text), consistency (visual coherence),
and simplicity towards understanding are well-known in cognitive
psychology. By taking a subjectivist epistemological position, we
accept that our understanding of the world depends on our prior
knowledge and experience, and therefore introduce familiarity as
one of the criteria. Interoperability is necessary as same artifacts
could be processed and viewed by different tools. Standardization
reduces unpredictability on part of stakeholders and is known to
contribute towards quality improvement [14].

2.4 Internal Attributes
The internal attributes are purely artifact-specific that impact how
external attributes are perceived. They are non-necessarily
mutually exclusive and improvement/detriment in one can impact

the other. The ones we view as relevant are: Secondary Notation,
Size, Structure, and Representation Format.

2.4.1 Secondary Notation
The secondary notation is one of the cognitive dimensions [13]
and is defined as the use of layout and perceptual cues to clarify
information or to give hints to the stakeholder. The UML
secondary elements that affect the comprehensibility of artifacts
are color, directionality, labeling, level of abstraction and
refinement, morphology, positioning, typography, and white
space.

2.4.2 Size
By size of a UML artifact, we mean both the area (dimensions)
that a UML artifact occupies and the file size. The former will
depend on the use of the secondary notation (morphology and
white space). The latter will depend on area of a UML artifact and
the export format being used. UML artifacts for similar projects
may reuse (in whole or in part, verbatim or slightly modified)
existing constructs. This external reuse of the constructs has a
direct impact on familiarity for a stakeholder that may have
already interacted with these constructs in the past. It will of
course be important that reused constructs blend in well with the
newer ones.

2.4.3 Structure
The structure of a UML artifact will depend on the use of the
secondary notation, and to the extent there is internal reuse and
coupling. The generalization/specialization or <<includes>>
relationships lead to internal reuse. Low coupling is a hallmark of
“good” design. We note here that low coupling will evidently also
reduce the number of relationship types in a UML diagram, and
thus the number of “lines” and/or “arrows”, which improves
readability.

2.4.4 Representation Format
In an electronic production of UML artifacts, the nature and
choice of a format (text or binary) can directly impact pragmatic
quality during production and subsequent transmission. Images in
binary formats on magnification tend to have an incarnation of the
“staircase effect” and are non-interactive. From applications of
Gestalt psychology to graph drawing [5], it is known that humans
more easily see smooth continuous contours than jagged ones.
Vector graphical formats serialized in the Extensible Markup
Language (XML) circumvent the issues of binary formats and
lend themselves to the benefits that are associated with descriptive
markup such as support for metadata, legibility (at virtually any
level of magnification), and sophisticated means of interaction on
virtually any platform.
Scalable Vector Graphics (SVG) is a language based on XML for
two-dimensional vector graphics that works across platforms,
across output resolutions, across color spaces, and across a range
of available bandwidths. Indeed, current UML modelers are
beginning to provide support for UML serialization in SVG.

2.5 Mechanisms
The mechanisms we view as relevant are: Quality Assurance
(Training in Secondary Notation, Use of Metadata, Pair Modeling,
Refactoring) and Quality Evaluation (Inspections, Metrics). We
have not included testing as one of the mechanisms as it is limited
to Executable UML [16], which is currently not part of the
standard UML.

 45

In the following, the scope and limitations of the mechanisms are
discussed for the sake of objectivity and to provide a benchmark
for feasibility analysis. The mechanisms themselves are non-
necessarily mutually exclusive and can indeed aid one another.

2.5.1 Training in Secondary Notation
Training in the use of the secondary notation is a necessity and
would require the basics of user interface and interaction design
(the mechanical and conceptual parts of artifact design,
respectively) as they apply to technical diagramming.
The appropriate use of secondary notation is described below
using Figure 1 as an example.

y Color. By associating different colors with constructs in a
complex figure, a stakeholder can be informed of the
semantic similarity and differences between the constructs
with respect to both their structure and behavior. For
example, use of color in UML Class Diagrams for Java has
been reported to improve the user understanding of the
overall design [3]. Any use of color, however, should take
into account the variations in the interpretation of primary
colors by computer monitors, contrast between background
and foreground, the way people with color vision deficiency
view an image, and the possibility that diagrams may be
printed on a black and white printer (Figure 1).

y Directionality. Directionality in UML constructs is critical
when expressing relationships that involve the use of arrows.
In cultures where English (and some others that are part of
the Latin family) is the primary language of use, people
usually tend to read from left to right and from top to bottom,
and to ease readability long phrases and multiple lines of text
need to reflect that. This is also critical in illustration of
diagrams that reflect a “flow” such as the UML State
Machine or Activity Diagrams. Inevitably, this also depends
on the positioning of aforementioned UML constructs.

y Labeling. Use of application domain terminology in text
labels makes it easier for non-technical stakeholders or users
new to a UML extension to become familiar with the artifact.
Furthermore, these labels will be more readable and reduce
possibilities of misinterpretations, if they follow a natural
naming [9] scheme that promotes the use of full words in
preference to acronyms or abbreviations. For example, the
label ATM has multiple expansions and therefore increases
the potential for ambiguity on part of the reader as compared
to for instance the label AsynchronousTransferMode.

y Level of Abstraction and Refinement. The same UML
diagram could be presented at different levels of abstraction
to address different needs. For example, a user-system
interaction illustrated via a UML Sequence Diagram need not
show the methods for system stimuli and data response

during use case analysis. Not all UML constructs are
appropriate for exposure to all stakeholders at all times. For
example, software macro-architecture being represented
using UML Package Diagrams may be much more accessible
to a stakeholder interested but not directly involved in design
than the UML Class Diagrams contained in it. For the sake of
clarity, the well-known 7 +/- 2 organizing principle could be
followed and complex diagrams could be split into multiple
parts. For example, it is useful to split large Use Cases into
multiple sub-Use Cases.

y Morphology. The morphology or shapes of nodes and
vertices in a UML artifact have an impact on how the
diagram as a whole is perceived by the user. It is known in
graph drawing [5] that presence of crooked nodes and zigzag
vertices are aesthetically unpleasing and cognitively
ineffective. In general, users also associate significance with
the size of nodes and vertices in a diagram, which therefore
need to be consistent and semantically meaningful (Figure 1).

y Positioning. Humans associate positioning of graphical
constructs to spatial and temporal relationships. The
legibility and stakeholder interpretation of a UML artifact are
affected by relative proximity of its nodes and vertices
(Figure 1). Structural patterns in relationships such as
symmetry and anti-symmetry are visual cues for familiarity
and need to be preserved. The proper placement of a text
label that is suppose to belong to one node is also important
to reduce any ambiguity on part of the reader when placed
between two nodes (Figure 1).

Figure 1. The pragmatic quality issues in the left
UML diagram are ameliorated on the right.

y Typography. The choice and the sequence of characters in
the use of text (annotation and labels) affect readability. For
example, the characters in a name like O0lI1 are hard to
distinguish and therefore difficult to read. The choice of fonts
used for annotation and labeling depends on a variety of
factors (serif versus sans-serif, amount of kerning, font size,
and so forth) that are important for legibility. Fonts
specifically designed for presentation on paper may in
general be hard to read on a computer screen.

y White Space. One of the traits of any diagramming style is
the introduction of white space at appropriate places. In UML
artifacts, white space can be added between nodes, between
nodes and vertices, and between labels and boundaries of
UML constructs for clarity. Shape and positioning of nodes
and vertices, and the use of white space complement each
other. The use of white space can increase the file size of a
model, and should be balanced with respect to the original
purpose of its introduction, namely readability.

The secondary notation is the basis of several style guidelines [1]
and patterns [6] specific to UML diagram types, and can serve as
a basis for a checklist against which an informal quality
evaluation can be carried out.

2.5.2 Use of Metadata
Metadata, such as in form of annotation, can provide further
explanation on items that are not immediately obvious. It can also
help capture author’s intent. At times, UML constructs being used
may not be common or known to the user (such as when UML
extensions are being used for the first time), or the stakeholders
involved may not have the necessary technical knowledge. In such
cases, annotating UML artifacts using the UML Note construct
can be particularly useful.

 46

In spite of their usefulness, the author needs to be aware that the
annotations do not overshadow the diagram itself (play secondary
rather than primary role in the diagram), are not mere echoes of
the graphical constructs, and do not contradict other annotations
within or across diagrams.

2.5.3 Pair Modeling
In traditional engineering, complex, large-scale artifacts are
usually crafted not by an individual but by a team. To that regard,
we introduce the notion of pair modeling where two people
participate in creating a UML artifact. Part of pair modeling can
also be viewed as an informal, lightweight monitoring of UML
artifacts in real-time: every item being drawn (or text being
written) by one is under scrutiny by the partner during the creation
process.
It is not automatic that any two persons put together will be more
productive towards modeling than working as individuals. For
pair modeling to be successful, the partners need to have
compatible personality type, and a similar level of experience with
the application domain and with UML itself.

2.5.4 Refactoring of UML Artifacts
UML artifacts may need to evolve for reasons such as discovery
of “impurities” or obsolescence. Refactoring methods are
transformations provide a systematic way of eradicating the
undesirables from an artifact while preserving its semantics. In the
last decade, refactoring has been extensively applied to the
context of source code, and more recently to UML artifacts [15].
Figure 1 can be viewed as a result of a sequence of simple
refactorings. Refactoring is beginning to have support among
popular UML modelers.
However, when the UML artifacts are bound to the source code,
any refactoring must also take into account any change
propagation on modification of the UML artifact. Also, formally
proving the invariant properties of the UML refactoring methods.
remains largely unaddressed.

2.5.5 Inspections of UML Artifacts
Inspections are a rigorous form of auditing based upon peer
review that, when practiced well, can help in error prevention in
UML artifacts. Inspections have proved to be an effective
technique in improving the overall quality of UML Class
Diagrams [4].
However, inspections entails an initial cost overhead, as each
participant needs to be trained in the structured review process
followed by the logistics of checklists, forms, and reports
involved. Moreover, the effectiveness of traditional checklist-
based reading that places all defects at the same level is at times
questionable. In some process maturity models such as the
Capability Maturity Model (CMM), adoption of inspections
amounts to achieving at least Level 3, to which a considerable
number of organizations do not qualify today.

2.5.6 Metrics for UML
Metrics can provide a means for quantitative evaluation of
pragmatic quality. There are metrics for UML that apply to an
artifact as a whole as well as to specific diagram types and
individual constructs [10]. These metrics give an assessment of
structural complexity of a UML artifact, such as, the amount of
internal reuse or coupling.
Still, the use of metrics faces some obstacles. Most of the metrics
are introduced and used on empirical grounds, and are not

formally validated against the representational theory of
measurement. Manual calculations using metrics are tedious and
require tool support, however, support for metrics in UML
modeling tools is not currently widespread.

2.5.7 Tool Support for Automation and Modeling
UML syntax-sensitive tools or modelers can assist in successfully
realizing the other mechanisms of achieving the pragmatic goal in
practice. For example, a modeler may allow multiple choices with
respect to font support, colors, or export formats; impose
constraints on diagrams to adhere to “good” styles; or monitor
changes between the model and the corresponding source code.
However, surveys have shown stark differences between
commercial and non-commercial tools with respect to their
ergonomics and features (conformance to official definition and
versions of UML, implementation of layout algorithms, flexibility
in altering properties of UML constructs, available import/export
formats, support for guidelines, patterns, automatic refactoring,
and metrics). This can directly or indirectly impact the pragmatic
quality of a UML artifact.

3. CONCLUSION AND FUTURE WORK
Models are the “castor oil” of software engineering. UML is likely
to continue playing an important role as the de facto visual
language for modeling software systems. This is only underlined
by the fact that the language has continually evolved in the last
few years and placed within the context of meta-modeling as
defined by the Meta Object Facility (MOF) which itself is a part
of a higher level of abstraction of the Model Driven Architecture
(MDA). Furthermore, the use of UML via its profile mechanism
has entered arenas such as user interface design and ontology
modeling for which it not originally designed per se.
UML artifacts are first-class citizens in software process
environments that embrace them, and must strive for high quality
to be useful for their target stakeholders. Addressing pragmatic
quality is a stride towards that.
The framework presented in this paper provides a first step
towards a structured basis for understanding and addressing the
quality of UML artifacts. Before embarking on a study on quality,
we must first clearly state the theoretical goal of doing so, and
then for practical purposes refine the goal if necessary to make
sure that it is indeed feasible. We also need to distinguish between
the perception of quality from a user’s perspective versus that
from an author’s viewpoint, and the external and internal quality
attributes, respectively, are a resulting consequence.
In educational settings, such as software engineering courses that
frequently make use of UML, it is crucial that the value of the
quality of UML artifacts be emphasized alongside their use in
software process deliverables. It is also important that this be
instilled and emphasized early as (similar to handwriting,
technical writing, or programming contexts) it becomes harder to
change habits as they mature.
In conclusion, we make the following recommendations to an
organization that values the production and long-term viability of
UML artifacts:
y If the UML artifacts are significant in number, their

production process needs to be systematically planned. This
is possible by setting up a sub-process within the process of
the target product.

 47

y Along with UML training, the producers of UML artifacts
need to be trained in the fundamentals of the UML secondary
notation.

y It is worthwhile investing in a UML modeler that supports
the mechanisms for targeting pragmatic quality. Apart from
the features and ergonomics of the modeler, a justified choice
must also include considerations of sustainability and
whether the import/export formats depend only on that
specific modeler.

y Since criteria are not all equal and there are no perfect
mechanisms, a feasibility analysis before any decision
making is necessary. One possible approach in this case is to
prioritize the criteria and adopt mechanisms based on that.
Fortunately, not all mechanisms are needed simultaneously
in the production process.

There are a few research directions that emanate from this work.
The external and internal quality attributes in the proposed
framework give us necessary but not sufficient conditions for
pragmatic quality of UML artifacts; it is an open question as to
how far are the necessary conditions from sufficiency. An
investigation into it may lead us to discover other attributes, which
would strengthen the framework further. According to the
ISO/IEC 9126-1 Standard, other quality factors, namely usability
and learnability, are related to this work. We anticipate a study of
other cognitive dimensions and using that to build a general
quality framework for UML artifacts as directions for future
research. Addressing quality of artifacts in other special-purpose
visual languages such as Feature Modeling for domain analysis,
Object Role Modeling (ORM) for conceptual data modeling and
Use Case Maps (UCM) for reactive systems would be of interest.

4. ACKNOWLEDGMENTS
The author would like to thank Terrill Fancott and Olga
Ormandjieva (Concordia University, Canada) for their comments
and feedback.

5. REFERENCES
[1] Ambler, S.W. The Elements of UML Style. Cambridge

University Press (2003).
[2] Booch, G., Jacobson, I., and Rumbaugh, J. The Unified

Modeling Language Reference Manual, Second Edition.
Addison-Wesley (2005).

[3] Coad, P., Lefebvre, E., and Deluca, J. Java Modeling in
Color with UML: Enterprise Components and Process.
Prentice Hall (1999).

[4] Conradi, R., Mohagheghi, P., Arif, T., Hegde, L.C., Bunde,
G.A., and Pedersen, A. Inspection of UML Diagrams using
OORT - An Industrial Experiment. European Conference for
Object-Oriented Programming (ECOOP 2003), Darmstadt,
Germany, July 21-25, 2003.

[5] Di Battista, G., Eades, P., Tamassia, R., and Tollis, I.G.
Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice-Hall (1999).

[6] Evitts, P. A UML Pattern Language. Macmillan (2000).
[7] Fenton, N.E. and Pfleeger, S.L. Software Metrics: A

Rigorous & Practical Approach. International Thomson
Computer Press (1997).

[8] Kamthan, P. A Framework for Addressing the Quality of
UML Artifacts. Studies in Communication Sciences, 4, 2
(2004), 85-114.

[9] Keller, D. A Guide to Natural Naming. ACM SIGPLAN
Notices, 25, 5, ACM Press (1990), 95-102.

[10] Kim, H. and Boldyreff, C. Developing Software Metrics
Applicable to UML Models. Sixth ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software
Engineering (QAOOSE 2002), Malaga, Spain, June 11,
2002.

[11] Lindland, O.I., Sindre, G., and Sølvberg, A. Understanding
Quality in Conceptual Modeling. IEEE Software, 11, 2, IEEE
Press (1994), 42-49.

[12] Nöth, W. Handbook of Semiotics. Indiana University Press
(1990).

[13] Petre, M. Why Looking Isn't Always Seeing: Readership
Skills and Graphical Programming. Communications of the
ACM, 38, 6, ACM Press (1995), 33-44.

[14] Schneidewind, N. F. and Fenton, N.E. Do Standards Improve
Product Quality? IEEE Software, 13, 1, IEEE Press (1996),
22-24.

[15] Sunye, G., Pollet, D., Le Traon, Y., and Jezequel, J.-M.
Refactoring UML Models. Fourth International Conference
on the Unified Modeling Language (<<UML>> 2001),
Toronto, Canada, October 1-5, 2001.

[16] Trong, T.T.D. A Systematic Procedure for Testing UML
Designs. Fourteenth International Symposium on Software
Reliability Engineering (ISSRE 2003), Denver, USA,
November 17-21, 2003.

[17] Van Solingen, R. and Berghout, E. The
Goal/Question/Metric Method: A Practical Method for
Quality Improvement of Software Development. McGraw-
Hill (1999).

[18] Unhelkar, B. Verification and Validation for Quality of UML
2.0 Models. John Wiley and Sons (2005).

 48

 49

Commonalities and Differences in Agile Development
and User-Centered Design Methodologies

Muhammad Faraz Anwar
Department of Computer Science and

Ahmed Seffah
Department of Computer Science and

Software Engineering Software Engineering
Concordia University, Montreal, Concordia University, Montreal,

Quebec, Canada H3G 1M8 Quebec, Canada H3G 1M8
1-(514)-803-7271 1-(514)-848-2424 ext. 3024

mf_anwar@cse.concordia.ca seffah@cse.concordia.ca

ABSTRACT Agile philosophy took its current form with the emergence of
agile manifesto in 2001 [2]. A group of practitioners came
together to discuss new processes that were not heavyweight or
documentation-oriented. What they came up with was a set of
following values:

There are numerous methodologies and processes that govern the
software development. Every process has its own features and
some overlapping characteristics with other processes. In software
development, there are two prominent philosophies that consider
human/user involvement: User-Centered Design and Agile
Software development. Both of these philosophies give a
particular way of thinking about software engineering. Although
these are two different philosophies, but we can draw some
parallels between them while highlighting their differences. This
study will enable researchers to find a common ground where the
best of these methodologies could be put into practice.

* Individuals and interactions over processes and tools

* Working software over comprehensive documentation

* Customer collaboration over contract negotiation

* Responding to change over following a plan

This philosophy and related methodologies have created lots of
interest in professionals and academia. Abrahamson and others [1]
have discussed major agile methods with respect to Process, Roles
and Responsibilities, Practices, Adoption and Experiences, Scope
of use, and finally Current Research. As a result of this approach,
they have presented a definition and classification of agile
methods, and different methods are compared with each other
with respect to these aspects.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]; D2.2 [Design Tools and
Tachniques].

General Terms
Design, Documentation, Human Factors, Theory.

Keywords The most important work that was needed to be done, and was
attempted by many researchers, is the adoption of agile values in
conventional software engineering practices. Kutschera and
Schafer [8] have presented a way to adopt agile methods in
dynamic environments. Paetsch and others [11] have analyzed the
role of agile methods in requirements engineering.

Requirements Engineering, User-Centered Design, Agile
Methodologies, Commonalities, Differences, Application.

1. INTRODUCTION
In the development of small or large software projects, it is often
desirable to adopt a methodology that is best suited for that
particular project and organizational structure. The two major
methodologies of Agile and UCD gives varied notions about how
to approach problems. In this paper, we will take a look at the
Agile software development methodologies and User-Centered
Design methodology. Later we discuss the common and different
points of these methodologies. Finally we present some scenarios
where these methodologies could be applied singularly or mixed.

2.1 Highlights of Agile Development
Philosophy
By definition, agile means: marked by ready ability to move with
quick easy grace and/or having a quick resourceful and adaptable
character [10]. The agile software development philosophy
perfectly agrees with this definition. The philosophy advocates
that the development process must always be ready to welcome
change and yet must move with quick pace. The fruit of this
thinking is more satisfied customers, developers with friendly
rapport, and above all, good working software.

2. AGILE SOFTWARE DEVELOPMENT
The Software Development Process has undergone numerous
revolutions since its inception. One of these revolutions is
emergence of the philosophy of Agile Software Development.
This philosophy is based on the notion that software development
teams are focusing more on creating useless documentation and
on the process itself rather than focusing on the product. The
result is more delayed or failed projects. Agile philosophy and its
supporting methodologies make sure that the development process
is free from less fruitful rituals found in earlier processes. It gives
new ideas for improving the communication between the team
members and avoiding loopholes in development.

Most of the literature about this philosophy is produced by
practitioners and consultants. As a result, this literature focuses on
methodologies. Methodologies impose a disciplined process over
software development with the aim of making development
predictable and efficient [7]. However, the Agile Manifesto [2]
gives a solid philosophical ground for methodologies. According
to the manifesto, Agile Software Development is based on four
values:

 50

mailto:mf_anwar@cse.concordia.ca
mailto:mf_anwar@cse.concordia.ca

 51

1) Individuals and interactions over processes and tools

Agile philosophy has a people-first orientation for software
development [1]. That is, people are more important than
processes. The software development process must suit the
individuals who are developing the software. Some processes are
better adapted by a group of developers in one culture but does
not so in another culture or environment. According to Cockburn
[4], people should not be treated as components that program.
Rather, people are thinking and communicating beings suited for
face-to-face communication. Therefore, one important
breakthrough in agile methodologies is the importance of working
with programmers’ instincts though verbal communication (two-
person teams in Extreme Programming, scrums in Scrum etc).

2) Working software over comprehensive documentation

Customers are always concerned with working software and have
little interest in long documentations. Therefore, agile philosophy
emphasizes on short but quick deliveries of working software.
This does not mean that it discourages any kind of documentation,
rather, the documentation should be done but only late in the
process and when needed. The lack of documentation is the
indication of two built-in characteristics of agile methods: (1)
Agile methods are adaptive rather than predictive; i.e. they
welcome change and also can change themselves according to the
situation. (2) Agile methods are people-oriented rather than
process-oriented; role of process is to support people (teams) in
work [7].

3) Customer collaboration over contract negotiation

Although contracts are important from business point-of-view,
they should not become a barrier against the communication
between two parties. Agile philosophy ensures that the
development team and client should collaborate with each other,
especially over the requirements and do not freeze the
requirements in the beginning of the project (this is particularly
good for clients with changing requirements).

4) Responding to change over following a plan

Requirements change during the course of project. This fact has
been taken graciously by agile philosophy and provided this
important value in its manifesto. One way to control
unpredictability due to changing requirements is ‘iterations’. The
length of iteration matters and dictates how often this change will
be accommodated into design. XP and Scrum, including other
methods, advise about the iteration length [7].

2.2 Focus on an Agile Method
In this section, we will focus on one major agile method that is
used in industry and has been commonly studied. This will
exemplify the highlights of the agile philosophy put forth in
previous subsection.

2.2.1 Extreme Programming (XP)
Extreme Programming is the most popular agile methodology. It
is based on four values namely: communication, simplicity,
feedback and courage. Based on these values, about a dozen
practices are suggested. These practices are not new; they are
tested, tried but forgotten. XP offers a lifecycle process with
phases: Exploration, Planning, Iterations to release, Production
and finally death phase (when there is nothing more to
implement). It is aimed for small and medium sized teams. Stress

is put on team work and empowering developer to make
decisions. [1, 7, 12].

Following table (table 1) summarizes the key concepts in XP and
names and descriptions of major practices [1].

Table 1: Extreme Programming – Major concepts and
practices

Key Concepts
Respond to changing customer requirements
Groupware-style development
Communication, simplicity, feedback and courage
Major Practices Description

Planning game Programmer decides effort,
customer decides time for
releases

Small releases At least once every 2 to 3 months

Metaphor A shared story guiding the
development

Simple design Design is simplest possible for
implementation

Refactoring Code is reviewed removed to
discrepancies

Pair Programming Programmers are always paired in
a team of two.

Collective ownership Anyone can change any part of
code anytime

Continuous integration A new piece of code is integrated
into existing code as soon as it is
ready.

40-hour week Programmers work for no more
than 40-hours per week.

On-site customer A representative of customer is
always present on programming
site.

Coding standards Coding rules and conventions
exist and must be followed by all
programmers.

3. USER-CENTERED DESIGN
PHILOSOPHY
In any process of Software Engineering, design is an important
phase. In this phase we consider the possible solutions of the
problem, which was analyzed in analysis phase, and how to derive
those solutions. During the design of the software, if we consider
user as the focus of every activity, the end product will be liked by
users. User-Centered Design approach advocates the same idea
that since users are the ultimate goals of software, their role
should be incorporated into the design process right from the
beginning to the end.

To support this idea of user-centered design and to give solid
guidelines that can fulfill this purpose, different researchers have
devised several methods, e.g. [5]. These methods are based on a
few key-concepts and advice some practices that will help in
achieving a user-centered design. These key concepts also give
interesting insights into how ideas from other Software
Engineering practices and other fields like psychology could be
adopted for a User-Centered Design.

3.1 Highlights of the User-Centered Design
Philosophy
The philosophy of User-Centered Design and HCI has roots in
disciplines of psychology, sociology, industrial design, graphic
design and others. This amalgamation of paradigms has made
UCD an interesting field. In software engineering, this is taken on
purely engineering approach and several methods are derived
from this philosophy that makes the software development closer
to user needs.

According to Ferre [6], the iterative approach in UCD philosophy
is crucial. It is impossible to make a correct design in first attempt
due to the complexity of human behavior. Iterations, therefore,
play a key role in defining user needs and refining them to render
them useful.

The most obvious highlight of this philosophy is active user
involvement. Unless the user is involved from the start of the
software development process, it is difficult to make a system that
is completely user-satisfying. The UCD philosophy enjoins the
development team to contact user on each and every step of the
process, get their feedback, inform them of the status of the
progress, and above all, evaluate short deliveries with them.

One important concept in UCD philosophy is proper
understanding of user and tasks [6]. Understating users is quite
obvious, but for tasks, the UCD philosophy says that these are
also important to understand. The viewpoint to look at tasks, in
case of UCD, is different. In conventional methods, tasks are
looked upon as features to implement. In UCD, tasks are set of
actions that a user has to perform to achieve a goal. The
viewpoint, thus, has shifted from system/software to user/human.
This important shift in paradigm has enabled developers and
designers to put themselves in user’s shoes and see what user will
have to do for hitting that goal. They thus design systems that are
close to user’s expectations from the system.

Users are humans. Humans are affected by their environment, so
do users. The UCD philosophy also emphasizes the need to study
user’s environment and take decisions accordingly. Context is
defined as the surroundings of users while they are using the
system. Contextual inquiry is thus deemed important in UCD
philosophy. Users’ detailed sketch includes their education,
exposure to similar systems, social status etc. make another
important factor in their behavior with the system. UCD thus
underlines the importance of understating the users themselves.

3.2 Focus on a Major UCD Method
User-Centered Design is a topic of research of a great many
software engineering scholars and practitioners. Here in this
section, we will consider Scenario-based design to give an idea of
how their key-concepts and major practices can make the process
and thus the product closer to the needs of end-users.

3.2.1 Scenario-Based Design
Scenarios are short stories telling about the use of system by the
users. The Scenario-based design puts scenarios in focus and
derives solution based on requirements gathered from them. In
scenario-based design, descriptions of how people accomplish
tasks are a primary working design representation [3]. Collecting
scenarios involves users in telling stories about their use of the
system. To collect and elicit scenarios, pictures, videos, and
storyboards are used. Table 2 summarizes key concepts and major
practice in scenario-based design.

Table 2: Scenario-based design – Major concepts and

practices

Key Concepts
Scenario
Video, pictures, storyboards
Major Practices Description

User Involvement Involve users to make and refine
scenarios

4. DISCUSSION: COMMONALITIES AND
DIFFERENCES
As we have seen in preceding section, UCD and agile software
development are two different philosophies, developed by
different people at different times. Yet, they have many aspects in
common. In this section, we will shed some light on the
commonalities and differences between these two philosophies.
The summary of the following discussion is presented in Table 3.

Two values of agile manifesto are: (1) Individuals and
Interactions over processes & tools. (2) Customer collaboration
over contract negotiation. These values are in harmony with the
UCD concepts of putting the emphasis on individuals (users and
stakeholders). Stakeholders are people who have any interest in
the software. The end-users are one of these stakeholders. In agile,
any stakeholder (called Customers) is given same importance and
is encouraged to interact with the development team.

On the other hand in UCD, the end-user is the primary concern of
the usability team since it is the end-user who is going to interact
with the user-interface of the software. In the context of agile
methodologies, Individuals also refer to development team
members with different skill-sets.

During discussion about the role of overlapping lifecycle phases,
Mayhew [9] points out that optimal implementation of the
lifecycle requires full participation of all teams. In traditional
software engineering, however, people of different skill-sets work
on their own part of lifecycle and communication is done through
documents. Instead, if all people work together in each phase of
the project, they can input their expert advice and raise their
concern at the right time. This idea of collaboration in Usability
lifecycle resonates perfectly with these agile values.

The other two values of agile philosophy are: (1) Working
software over comprehensive documentation, and (2) Responding
to change over following a plan. These values are not very
common in UCD circles. In UCD, emphasis is put on getting the
user-goals and requirements in written form. Style-guides are
suggested to be made/updated after every major phase [10].

 52

Prototypes are encouraged to be made and evaluated long before
the actual product is produced.

In agile methodologies, a working, deliverable version of software
is always desirable and documentation is delayed to be done as
late as possible. Change tolerance is also projected in UCD, but
responding very quickly to change sacrificing the process is not
advocated. Rather, this change management is incorporated into
the UCD process in the form of short, frequent iterations and user
evaluations.

Requirement fixing is discouraged in both philosophies.
Customers (users in UCD terms) are encouraged to collaborate
with the development team. During this collaboration, users
sometimes realize that what they termed as necessary in the
system are not too necessary and vice versa. At this point, the
development team adjusts the requirements and other plans to
accommodate these changes. Change in environment can also
sometimes make change necessary.

Both philosophies stress customer satisfaction and have a people-
first orientation for software development. This causes their
corresponding methods to have tendency to come together and
provide efficient methods for software development.

Another aspect that is common in both philosophies is the
iterative approach of lifecycle. Due to the complexity of human
behavior, it is impossible in UCD to create a design that is correct
in the first attempt. In agile, similarly, iterations are a way to
manage changes and refining the product.

We can summarize the above discussion in a table (table 2.2). It
juxtaposes the two philosophies in terms how one aspect in UCD
is considered in agile philosophy.

Table 3: Summary of Commonalities and Differences in agile

and UCD philosophies
Agile Software

Development
User-Centered Design

Customer collaboration

Stakeholder satisfaction

Developer as focus in
process

Documentation as late as
possible

Quick delivery of working
software

Process should be flexible
enough to accommodate
different projects

Change should be reflected
in next delivery

Choice of which task to
perform first

User involvement

End-user satisfaction

End-users are focus in process,
not developers

Documentation after every
major phase

Frequent evaluation of
prototypes

Process should be tailored for
different organizations

Change should be
accommodated in next design
iteration

Choice of which technique to
perform tasks

5. WHEN TO USE WHAT? SUGGESTIONS FOR
CHOOSING THE RIGHT METHOD

It is often confusing for developers to decide when to use what
method. Whether the agile methods are good for their project?
How necessary and feasible it is to spend time in UCD practices?
Will a quick heuristic evaluation be enough for the product? In the
light of the above discussion, we will try to present some
scenarios where different methods would be helpful. However, it
is the judgment applied to the project on the development time
which will be most correct for the project.

Scenario 1: Agile methods
If the project and company has following statements true:

* It is a small- to medium-sized project.

* The time limit is short.

* Customer wants quick deliveries.

* Requirements seem to change frequently.

* Team is not big i.e. 3-7 people working on the project.

It is better in these situations to use agile development methods
like Extreme programming which work very well for small- to
medium-size projects with tight deadlines and changing
requirements.

Scenario 2: UCD methods
If the project has following characteristics:

* Time limit is not too tight.

* Product is to be used by people of varied backgrounds.

* There are some special deployment needs of the system, like
embedded systems or kiosks.

* Product is to be used by people with some special needs.

* Ease-of-use is emphasized by customer.

In such cases, it is better to start off the project with proper user-
centered design process and use usability analysis and design
methods. Testing should be done after every development
iteration and prototyping should be used to verify the design of
the system with users.

Scenario 3: Mix of Agile and UCD
Agile and UCD methods could be used together. If the project has
following characteristics, consider mixing both practices.

* Customer is available for frequent interaction during
development.

* Project deadline is not too tight.

* Team is small to medium sized.

* Usability matters for the users of the system.

In such cases, its feasible to have small agile teams developing
small iterations and one team ensures usability by helping in
designing a good user-interface. As soon as iteration is ready for
delivery, a quick usability test would be worthwhile.

 53

5. CONCLUSIONS [4] Cockburn, A. (2000) Characterizing People as Non-Linear,
First-Order Components in Software Development In
Proceedings of the 4th International Multi-Conference on
Systems, Cybernetics and Informatics, June 2000, Orlando,
Florida, pp. 19.

The two prominent philosophies in software engineering that
emphasize user involvement during development are Agile and
User-Centered Design. Four values that the agile philosophy is
based on are: Individuals and interactions over processes and
tools, Working software over comprehensive documentation,
Customer collaboration over contract negotiation, Responding to
change over following a plan. Agile methods are mainly devoted
towards the implementation phase of software development
lifecycle. User-centered design, on the other hand, involves
users/human right from the beginning of software development
lifecycle. Its methods include interaction with users frequently to
get their requirements. There are several differences and
commonalities in these two philosophies. The commonalities
indicate that the methods of corresponding philosophies could be
acted upon on a common ground. The differences highlight the
areas of further research. In the end, we present some suggestions
on when to use agile and when to use UCD and when both
together.

[5] Constantine, L. L. and Lockwood, L., A.D. (2002) 'Usage-
Centered Engineering for Web Applications', IEEE Software,
vol. 19, issue. 2, pp. 42 - 50. [6] Ferre, X. (2003) Integration
of Usability Techniques into the Software Development
Process In Proceedings of the International Conference on
Software Engineering - ICSE 2003, May 3-10, 2003,
Portland, Oregon, USA, pp. 28-35.

[6] Ferre, X. (2003) Integration of Usability Techniques into the
Software Development Process In Proceedings of the
International Conference on Software Engineering - ICSE
2003, May 3-10, 2003, Portland, Oregon, USA, pp. 28-35.

[7] Fowler, M. (2000), The New Methodology, accessed: March
2004, available at:
www.martinfowler.com/articles/newMethodology.html,
April 2003

[8] Kutschera, P. and Schafer, S. (2002), Applying Agile methods
in rapidly changing environments, accessed: 2004, available
at:

6. REFERENCES
http://jeckstein.com/papers/Agile%20Methods%20-[1] Abrahamson, P., Salo, O., Ronkainnen, J. and Warsta, J.

(2002) Agile software development methods - Review and
analysis, ESPOO 2002, VTT Publications, pp.107.

%20Steffen%20Schaefer%20&%20Peter%20Kutschera.pdf
[9] Mayhew, D. J. (1999) The Usability Engineering Lifecycle: A

practitioner's handbook for User Interface Design, Morgan
Kaufmann Publishers, Inc., San Francisco, California.

[2] Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D.
(2001), Agile Manifesto, accessed: March 2004, available at:
http://www.agilemanifesto.org/

[10] Merriam-Webster (1982), Merriam-Webster Online
Dictionary, accessed: 2004, available at: www.m-w.com
July-23-2002

[11] Paetsch, F., Eberlein, D. A. and Maurer, D. F. (2003)
Requirements Engineering and Agile Software Development
In Proceedings of the Twelfth IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’03), 9-11 June 2003, IEEE Computer
Society, pp. 308 - 313.

[3] Carroll, J. M. (2000) Making Use: Scenario-based design of
Human-Computer Interactions In Proceedings of the
Designing interactive systems: processes, practices, methods,
and techniques, December 2000, New York, NY, USA,
ACM Press New York, USA, pp. 4.

[12] Wells, D. (2004), Extreme Programming: A gentle
introduction, accessed: March 2004, available at:

http://www.extremeprogramming.org/ , February 28, 2004

 54

http://www.agilemanifesto.org/
http://www.martinfowler.com/articles/newMethodology.html
http://jeckstein.com/papers/Agile%20Methods%20-%20Steffen%20Schaefer%20&%20Peter%20Kutschera.pdf
http://jeckstein.com/papers/Agile%20Methods%20-%20Steffen%20Schaefer%20&%20Peter%20Kutschera.pdf
http://www.m-w.com/
http://www.extremeprogramming.org/

 55

Engineering the Requirements in User-Centered Design
and Agile Development Methodologies

Muhammad Faraz Anwar
Department of Computer Science and

Software Engineering
Concordia University, Montreal,

Quebec, Canada H3G 1M8
1-(514)-803-7271

mf_anwar@cse.concordia.ca

1. ABSTRACT
Among all phases of software development, requirements
engineering has its unique place. It is the phase of requirements
engineering where the development team has a chance to
understand the domain of the system. There are many
methodologies known in the software engineering communities
which place different degrees of emphasis on requirements
engineering process. In this paper, we will provide an analysis
of how requirements engineering is treated in two major software
engineering paradigms of User-Centered-Design and Agile. We
do this by providing a critique of the most recent research
pertaining to these two paradigms. Consequently, we present a
framework of requirements engineering which is founded in user-
centered design principles. The insights of this paper will help
development teams to choose a suitable method for the
requirement engineering phase for their projects.

2. Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]; D2.2 [Design Tools and
Tachniques].

3. General Terms
Documentation, Human Factotrs, Theory.

4. Keywords
Requirements Engineering, User-Centered Design, Agile
Methodologies.

1. INTRODUCTION
User-centered requirements engineering is a significant field in
software engineering. The purpose of every software is to solve
certain problems or to provide an easy means to perform different
tasks. Knowing these problems or tasks, thus, is the most logical
first step in development of software systems. The field of
requirements engineering deals with this first step in software
development. It is the topic of study for many researchers e.g. [8,
17, 18, 19].

One common aspect in almost all interactive software systems is
that they should support human experiences while providing task-
and context-aware interaction. Designing such interactive systems
is no trivial task; therefore, trial-and-error is not sufficient and

there has to be a well-defined method for collecting and analyzing
requirements. Different methods are needed for different activities
in requirements engineering. These activities could be grouped as
elicitation, specification and validation. The methods for
requirements engineering, besides being well-defined, must also
be usable by software engineers. Different software engineering
methodologies have proposed different methods for requirements
engineering and put varying degrees of emphasis on this
important phase of software development.

Requirements are collected from the domain the software is to be
used in. Besides all the current methods that exist, one thing that
should be of principal concern in requirements engineering
methods is the focus on end-users. Orr argues that job of
requirements engineer is to discover what users really need [18].
Since the product is made for human users, its success depends
upon how well humans can use the system. The focus of
requirements engineering and design in User-Centered Design and
User-Centered Requirements Engineering is user and not the
functionality [16].

There are two levels of human interaction involved in user-
centered requirements engineering methods. First, the
requirements engineers use these methods to interact with end-
users to collect domain knowledge, and secondly, since the
methods are used by human software engineers, the process itself
must also be easy for humans to be followed. This is where agile
software methodologies come into play. Agile development is a
well-established idea practiced by many people in software
engineering community (e.g. [7, 12, 15]). Its methodologies, for
example Extreme Programming, advocate the involvement of
users during the software development and flexibility in the
process to adapt with human work psychology. Agile aspects in
user-centered requirements engineering process, we believe, can
give a solid and comfortable ground for user-centered
requirements engineers.

1.1 An Overview of User-Centered Design
Methodologies

The philosophy of User-Centered Design and HCI has roots in
disciplines of psychology, sociology, industrial design, graphic
design and others. This amalgamation of paradigms has made
UCD an interesting field. In software engineering, this is taken on
purely engineering approach and several methods are derived
from this philosophy that makes the software development closer

 56

to user needs. Here it would be worthwhile to mention that
although these methodologies are called user-centered design,
they are not limited to the design phase of development. As we
will see later in this paper, UCD methods put rightful emphasis on
requirements engineering as well.

The most obvious highlight of these methodologies is active user
involvement. Unless the user is involved from the start of the
software development process, it is difficult to make a system that
is completely user-satisfying. The UCD philosophy enjoins the
development team to contact user on each and every step of the
process, get their feedback, inform them of the status of the
progress, and above all, evaluate short deliveries with them.

One important concept in UCD philosophy is proper
understanding of user and tasks [13]. Understating users is quite
obvious, but for tasks, the UCD philosophy says that these are
also important to understand. The viewpoint to look at tasks, in
case of UCD, is different. In conventional methods, tasks are
looked upon as features to implement. In UCD, tasks are set of
actions that a user has to perform to achieve a goal. The
viewpoint, thus, has shifted from system/software to user/human.
This important shift in paradigm has enabled developers and
designers to put themselves in user’s shoes and see what user will
have to do for hitting that goal. They thus design systems that are
close to user’s expectations from the system.

Users are humans. Humans are affected by their environment, so
do users. UCD methodologies also emphasize the need to study
user’s environment and take decisions accordingly. Context is
defined as the surroundings of users while they are using the
system. Contextual inquiry is thus deemed important in UCD
philosophy. Users’ detailed sketch includes their education,
exposure to similar systems, social status etc. make another
important factor in their behavior with the system. UCD thus
underlines the importance of understating the users themselves.

Following are major methodologies of UCD:

* Scenario-based design

* Contextual design

* Usage-centered design

The highlights of UCD methods could be summarized in the
following table.

Table1: Highlights of UCD methods

Characteristics / Highlights

Present
in Agile?

Roots in disciplines of psychology, sociology
and industrial design.

User involvement in every phase of software
development.

Encompasses requirements engineering
activities.

Shifts paradigm from functions to implement to
tasks to support.

No

Yes

Yes

No

1.2 An Overview of Agile Methodologies
Agile methodologies are based on the notion that software
development teams are focusing more on creating useless
documentation and on the process itself rather than focusing on
the product. The result is more delayed or failed projects. Agile
philosophy and its supporting methodologies make sure that the
development process is free from less fruitful rituals found in
earlier processes. It gives new ideas for improving the
communication between the team members and avoiding
loopholes in development.

Agile philosophy has matured over several years. The emergence
of agile manifesto in 2001 [7] was a major milestone in the history
of agile methodologies. A group of software engineers and
practitioners of the field discussed the best practices that they had
developed through time. These practices and methodologies were
not heavyweight or documentation-oriented. Together they
decided on a set of following values:

* Individuals and interactions over processes and tools
* Working software over comprehensive documentation
* Customer collaboration over contract negotiation
* Responding to change over following a plan

This philosophy and related methodologies have created lots of
interest in professionals and academia. Abrahamson and others [1]
have discussed major agile methods with respect to Process, Roles
and Responsibilities, Practices, Adoption and Experiences, Scope
of use, and finally Current Research. Paetsch and others [19] have
analyzed the role of agile methods in requirements engineering.

Some most common agile methodologies are:

* Extreme Programming
* Scrum
* Crystal Methods
* Dynamic System Development Method (DSDM)

Highlights of agile methodologies could be summarized as below.

Table 2: Highlights of Agile methodologies

Characteristics / Highlights

Preesent
in UCD?

Places importance on individuals (users and
developers).

Documentation is kept to minimum, deliveries are
kept at maximum.

Customer is always accessible.

Yes

No

Yes

2. REQUIREMENTS ENGINEERING IN
USER-CENTERED DESIGN

Requirements engineering is an important phase in User-Centered
Design. Unless it is clear what users want, it is impossible to make
a system that can satisfy users. Requirement engineering in UCD

 57

is often divided in several phases. Each of these phases plays a
role in building up requirements which are vague in the
beginning. These phases are usually characterized as Elicitation,
Analysis, Design and Validation. According to Cox [11], common
activities of requirement engineering process are:

* Project Inception
* Requirement Elicitation
* Requirement Analysis
* Requirement Discovery
* Specification
* Interface Design
* Validation

Project Inception and Requirement Elicitation can be grouped in
Elicitation phase; activities of Requirement Analysis and
Discovery can be grouped into Analysis phase; activities of
Specification and Interface Design can be grouped into Design
phase; and Validation is itself a phase. Requirement Discovery is
inventing new requirements from existing ones. We can validate
the user requirements using the prototypes.

An important facet of requirement analysis and elicitation is
context analysis. Context analysis is going to field with users and
see how they use the current system. This practice gives useful
insights into future system’s functional and non-functional
requirements. In automotive industry, for example, developing
functionality from scratch is a rare practice [25]. Studying already
present systems and analyzing context are crucial steps in
requirement engineering. The study of user context in
requirements engineering is also highlighted in process diagram
by UPA [24].

Jokela [12] identifies the context in which system is to be used in
terms of:

* Characteristics of intended users
* Tasks users need to perform
* Environment in which the users are to use the system.

This information collected in context analysis provides essential
insights on users and their requirements.

International Standards Organization (ISO) established the ISO
13407 standard for User-Centered Design process in 1999. This
document is based on the definition of usability in ISO 9241-11
and tries to formulate a process that can fit into conventional
software engineering processes as well.

Jokela and others [12] discusses the ISO 13407 in detail.
According to them, ISO 13407 shows limited guidance for
designing usability. What it emphasizes is guidance for user and
environment/context of use. It also has limited guidance for user
goals and measures and the focus is on theoretical aspects of
usability, rather than detailed coverage of methods and
techniques.

ISO 13407 describes UCD from four different aspects, which are:
Rationale, Principles, Planning and Activities of UCD. In
Rationale, it explains the benefits of UCD such as reduced cost,
increased satisfaction and productivity of users. Principles that
usability is based on are active user involvement, appropriate

allocation of functions between user and technology and multi-
disciplinary design. Planning tries to fit the usability with the
conventional software engineering process [12]. Another aspect of
usability according to ISO 13407 is the activities of UCD. These
activities include:

* Understanding the context of use
* Specifying user and organizational environment
* Producing design solution
* Evaluating design against requirements

Of these activities, the first two: Understanding context and
specifying user are especially relevant to requirement engineering
process.

3. REQUIREMENTS ENGINEERING IN
AGILE METHODOLOGIES

The heart of agile methodologies lies in changing requirements.
The agile philosophy advocates that the requirements should
never be frozen; instead, it always welcomes change and adjusts
the software according to new requirements. There are different
approaches to address the requirement management in different
agile methods.

The traditional requirement engineering approaches and agile
methods agree on the importance of stakeholder involvement. The
requirements are discussed in face-to-face meetings with
customers rather than through formal documents; the reason is
that agile philosophy is more people-oriented than process-
oriented. The customers (or customer representatives) are
encouraged to be present on the development site during all
phases of development. This customer is often assumed to have
all the knowledge and authority in the project, which is rarely the
case [19].

The common requirements engineering phases of elicitation,
analysis and validation are present in all agile processes but with
different names and do not have crisp boundaries. Techniques
used are also different.

In agile methodologies, creating complete and consistent
requirements documents is not considered feasible or cost
effective [19]. This makes agile methods more adaptive to change
rather than being predictive of user requirements. This is
considered a good quality in agile terms but certain traditional
approaches discourage this idea because it makes the software
development process very unpredictable.

In Extreme programming, customer reviews all the requirements
and sets priority for implementation. It enables software to be
developed without disruption despite of vague or constantly
changing requirements. There is no artifact, however, to store
requirements besides user stories. User stories are similar as
scenarios and help record useful non-functional as well as
functional requirements.

In Scrum, the requirements that are currently known are saved in
Product Backlog list. This is a way to store, but not a tool to
collect requirements. The Sprints in the Scrum method involves
requirement phase along with other phases (there are several
sprints in a Scrum method lifecycle).

 58

In Crystal Orange, one of the methods in Crystal methods set, a
requirements document is required; requirements to be
implemented are decided before every increment starts. Feature
Driven Design does not explicitly address the issue of gathering
and managing requirements [1].

4. FRAMEWORK SUPPORT FOR
REQUIREMENTS ENGINEERING

Having seen two major methodologies of software engineering
and how they treat the requirement engineering, we will now look
at a framework that is proposed under the umbrella of user-
centered design. The framework help the practitioners apply the
ideas and methods of UCD with the help of scenarios. A detailed
discussion of this framework is found in [3].

4.1 An Overview Of Sucre Framework
The Scenario-based User-Centered Requirements Engineering
(SUCRE) is a requirement engineering framework based on
Scenarios. This framework was developed by Alsumait [3] in
department of Computer Science, Concordia University.
According to this framework, the requirements are captured and
recorded in scenarios which are represented with use case-maps.
The use-case maps are semi-formal notations to represent
scenarios and could be used to elilcit requirements. Figure 1
shows the structure of SUCRE framework.

This framework is evolved from ACUDUC which in turn is
derived from RESPECT framework (Figure 2). A brief
introduction of ACUDUC and RESPECT is given in following
paragraphs.

Figure 2: Evolution of SUCRE framework

The RESPECT (REquirements SPECification in Telematics) [17]
gives a framework for requirements engineering. The
requirements are achieved with this framework in four phases:
Phase I – User context and early design, Phase II – Prototype and
user test, and Phase III – User requirements documentation. This
framework is exceptionally good in proposing templates and
forms that could be used in contextual analysis.

The ACUDUC (Approach Centered on Usability and Driven by
Use Cases) framework which combines use-cases with
RESPECT, is proposed by Seffah and his team [21]. It discusses
the following key activities in requirements engineering:

* Summarizing the system
* Gathering context of use.
* Functional requirement, including UI widgets
* Reviewing and Validating

These activities are defined and validated through industrial
projects. Anwar [5] has presented a roadmap for user-centered

Figure 1: Structure of SUCRE framework [3]

Requirements engineering which includes these steps as its
foundation.

An important work for Usability Requirements is done by Seffah
and Alsumait [4]. They have showed that Use-Case Maps (UCMs)
work well for user-interface requirement engineering by
extending the basic notation of UCMs and fragmenting the UCM
design process into two steps, namely, the Conceptual Use-Case
maps and Physical Use-Case maps. This extension of UCMs:
CUCMs together with PUCMs, make up the SUCRE framework
[3]. This framework presents an approach for UI Requirements
Engineering through Scenarios and UCMs.

The role of scenarios in requirements engineering is also studied
by several researchers [9, 10, 2, 20, 22, 6]. According to them,
scenarios have the potential to play important role in requirements
engineering. Some have proposed a scenario-based model e.g.
Sutcliffe and Ryan [23]. Scenarios are beneficial in re-use of
knowledge in requirements engineering because they store a
wealth of domain knowledge in them that can be understood by
people of every level of expertise in development team and
stakeholders. Scenarios can also be used to derive mid-fidelity
prototype, like storyboards, that are beneficial in requirements
analysis. A process for this type of derivation is proposed by
Anwar [5].

5. CONCLUSION
Requirements engineering is treated differently by different
methodologies, although it is a very important phase during
software development. User-Centered Design puts more emphasis
on requirements engineering than agile methodologies do. Agile
philosophy believes in incorporating changing requirements
during the implementation. There are several methods for User-
centered requirements engineering, SUCRE being one of them.
SUCRE is an evolution of ACUDUC framework which

 59

incorporates use-cases into the RESPECT framework. SUCRE
framework is based on scenarios and employs use-case maps to
represent these scenarios. There is also a prototype-derivation
process which compliments the SUCRE framework.

The discussion in this paper about the treatment of requirements
in UCD and agile methodologies wil help practitioners as well as
learners decide what to expect in terms of requirements frorm
both of these methodologies. This is specially useful when, in the
analysis phase, development team has to decide among the
methods to use for requirements engineering. For this, we suggest
that if the project has a lot of user interaction involved, such as a
web application, it is better considering UCD methods instead of
agile methods. In case of projects where functionality is important
and quick deliveries are required, agile methodologies would
serve better. Attempting to employ lengthy UCD process when
application must be delivered to the customer quickly would not
be a wise decision. However in some cases, these two
methodologies can compliment each other, such as while using
extreme programming and customer is available on-site. Besides
the practice of these methods in industry, those who are learning
could benefit from this discussion since they can know the
important aspects of each of these methodologies in domain of
requirement engineering.

6. REFERENCES
[1] Abrahamson, P., Salo, O., Ronkainnen, J. and Warsta, J.

(2002) Agile software development methods - Review and
analysis, ESPOO 2002, VTT Publications, pp.107.

[2] Achour, C. B. (1998) Writing and correcting textual

scenarios for system design In Proceedings of the Ninth
International Workshop on Database and Expert Systems
Applications, 26-28 Aug. 1998, Vienna, Austria, pp. 166 -
170.

[3] Alsumait, A. (2004) User Interface Requirements

Engineering: A Scenario-Based Framework, PhD. Thesis in
Dept. of Computer Science and Software Engineering,
Concordia University, Montreal.

[4] Alsumait, A., Seffah, A. and Radhakrishnan, T. (2003) Use

Case Maps: A Visual Notation for Scenario-Based User
Requirements In Proceedings of the 10th International
Conference on Human - Computer Interaction, June 22 - 27,
Crete, Greece.

[5] Anwar, M. F. (2005) An Agilized Roadmap for User

Centered Requirements Engineering and Prototype
Generation, Masters Thesis in Dept. of Computer Science
and Software Engineering, Concordia University, Montreal.

[6] Bai, X., Tsai, W. T., Paul, R., Feng, K. and Yu, L. (2002)

Scenario-based modeling and its applications In Proceedings
of the Proceedings of the Seventh International Workshop on
Object-Oriented Real-Time Dependable Systems, 7-9 Jan.
2002, pp. 253 - 260.

[7] Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D.
(2001), Agile Manifesto, accessed: March 2004, available at:
http://www.agilemanifesto.org/

[8] Carroll, J. M., Rosson, M. B., Chin, G. J. and Koenemann, J.

(1998) 'Requirements development in scenario-based design',
IEEE Transactions on Software Engineering, vol. 24, issue.
12, pp. 1156 - 1170

[9] Carrol, J. M. (1999) Five reasons for scenario-based design

In Proceedings of the 32nd Annual Hawaii International
Conference System Sciences, 1999. HICSS-32, 5-8 Jan.
1999, pp. 11.

[10] Carroll, J. M. (2000) Making Use: Scenario-based design of

Human-Computer Interactions In Proceedings of the
Designing interactive systems: processes, practices, methods,
and techniques, December 2000, New York, NY, USA,
ACM Press New York, USA, pp. 4.

[11] Cox, K. (2000) Fitting scenarios to the requirements process

In Proceedings of the 11th International Workshop on
Database and Expert Systems Applications 2000 (DEXA'00),
4-8 Sept. 2000, Greenwich, London, U.K., IEEE Computer
Society Press, 2000, pp. 995 - 999.

[12] Fowler, M. (2000), The New Methodology, accessed: March

2004, available at:
www.martinfowler.com/articles/newMethodology.html,
April 2003

[13] Ferre, X. (2003) Integration of Usability Techniques into the

Software Development Process In Proceedings of the
International Conference on Software Engineering - ICSE
2003, May 3-10, 2003, Portland, Oregon, USA, pp. 28-35.

[14] Jokela, T., Iivari, N., Matero, J. and Karukka, M. (2003) The

Standard of User Centered Design and the Standard
definition of Usability: Analyzing ISO 13407 against ISO
9241-11 In Proceedings of the Latin American conference on
Human-computer interaction, Rio de Janeiro, Brazil, ACM
Press New York, NY, USA, pp. 53 - 60.

[15] Kutschera, P. and Schafer, S. (2002), Applying Agile methods

in rapidly changing environments, accessed: 2004, available
at: http://jeckstein.com/papers/Agile%20Methods%20-
%20Steffen%20Schaefer%20&%20Peter%20Kutschera.pdf,
July-23-2002

[16] Lauesen, S. (1997) Adding Usability to Software Engineering

In Proceedings of the IFIP TC13 Interantional Conference on
Human-Computer Interaction, INTERACT '97, 14th-18th
July 1997, Sydney, Australia, Chapman & Hall 1997.

[17] Maguire, M. C. (1998), RESPECT 5.3: User-Centred

Requirements Handbook, accessed: 31st March 2004,
available at:
http://www.ejeisa.com/nectar/respect/5.3/contents.htm, 29
June 1998

 60

http://www.agilemanifesto.org/
http://www.martinfowler.com/articles/newMethodology.html
http://jeckstein.com/papers/Agile%20Methods%20-%20Steffen%20Schaefer%20&%20Peter%20Kutschera.pdf
http://jeckstein.com/papers/Agile%20Methods%20-%20Steffen%20Schaefer%20&%20Peter%20Kutschera.pdf
http://www.ejeisa.com/nectar/respect/5.3/contents.htm

[18] Orr, K. (2004) 'Agile requirements: opportunity or

oxymoron?' IEEE Software, vol. 21, issue. 3, pp. 71 - 73.

[19] Paetsch, F., Eberlein, D. A. and Maurer, D. F. (2003)

Requirements Engineering and Agile Software Development
In Proceedings of the Twelfth IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’03), 9-11 June 2003, IEEE Computer
Society, pp. 308 - 313.

[20] Pohl, K., Weidenhaupt, K., Jarke, M. and Haumer, P. (1998)

'Scenarios in system development: current practice', IEEE
Software, vol. 15, issue. 2, pp. 34 - 45.

[21] Seffah, A., Djouab, R. and Antunes, H. (2001) Comparing

and reconciling Usability-Centered and Use Case-Driven
Requirements Engineering Process In Proceedings of the 2nd
Australasian conference on User interface, Queensland,
Australia, IEEE Computer Society Washington, DC, USA,
pp. 132 - 139.

[22] Sutcliffe, A. G., Maiden, N. A. M., Minocha, S. and Manuel,

D. (1998) 'Supporting scenario-based requirements
engineering', IEEE Transactions on Software Engineering,
vol. 24, issue. 12, pp. 1072 - 1088.

[23] Sutcliffe, A. G. and Ryan, M. (1998) Experience with

SCRAM, a Scenario Requirements Analysis Method In
Proceedings of the Proceedings of the Third International
Conference on Requirements Engineering, 1998., 6-10 April
1998, Colorado Springs, pp. 164 - 171.

[24] UPA (2002), Usability Professionals Association website,

accessed: March 2004, available at:
http://www.usabilityprofessionals.org

[25] Weber, M. and Weisbrod, J. (2003) 'Requirements

Engineering in Automotive Development: Experiences and
Challenges', IEEE Software, vol. 20, issue. 1, pp. 16 - 24.

 61

http://www.usabilityprofessionals.org/

Tool Support for an Evolutionary Design Process using
XML and User-Interface Patterns

Peter Forbrig, Andreas Wolff,
University of Rostock

Institute of Computer Science
Albert Einstein Str. 21,

18059 Rostock, Germany
[rusty|pforbrig]@informatik.uni-rostock.de

Anke Dittmar, Daniel Reichart
University of Rostock

Institute of Computer Science
Albert Einstein Str. 21,

18059 Rostock, Germany
 [ad|dr007]@informatik.uni-rostock.de

ABSTRACT
Design patterns are very helpful to develop well-structured
software. This fact is widely accepted by the software
engineering community. The same kind of support is
expected by UI-Patterns.

In this paper we discuss an approach integrating use of
patterns into a model-based development process. It will be
shown a GUI editor that can be extended by the feature of
managing the application of pattern-instances.

As an example the pattern of a wizard is used to improve an
existing user interface by manipulating different models (UI
and dialog model).

Additionally, useful XML-languages are discussed.
Especially tool support for developing parts user interfaces
from class diagrams and their integration into dialog models
is presented.

Author Keywords
Model-Based Design, Task Models, Object Models,
Patterns, XUL, XIML.

ACM Classification Keywords

HCI

INTRODUCTION
Along with the enhancing capabilities of mobile devices
model-based development of software systems becomes
popular. In this domain varying platforms have to be
supported in an economic way by new interactive
applications.

It is especially necessary to design user interfaces in an
abstract way because there is a diversity of different
platforms with specific features. Models help to derive spe-
cifications of interactive systems, and in particular, of user
interfaces. We consider model based software development
as a sequence of transformations of models that is not per-
formed in a fully automated way, but supported by humans
using interactive tools.

task
model

b.-object
model

device
model

class
diagram

(analysis)

Figure 1 - General view on a transformational model-based
development process.

We also think these persons, i.e. software engineers and
user interface designers; have to base their work on the
same models. Our work is especially focused on methods
and tools supporting transformations by patterns.

In this paper we focus on the user interface development
process.

The paper is structured in such a way that after discussing
some related work an introduction of our development
process will be given. A specific user interface for a small
application is developed. Following that, the example user
interface will be further enhanced, by introducing our
proposal of how to integrate the appliance of ui-patterns
within this development approach exemplarily.

At the end we will give an outlook of future work to be
done.

Transformation Implementation

dialog
graph

abstract
user interface

application
model

UI
model

Design

Design

Design

user
delmo

class
diagram

(analysis)

Transformation by patterns

Transformation by patterns

task
model

b.-object
model

class
diagram

(analysis)
nsformation Implementation

device
model

Tra

dialog
graph

abstract
user interface

application
model

UI
model

Design

Design

Design

user
delmo

class
diagram

 (design)

Transformation by patterns

Transformation by patterns

 62

RELATED WORK
Our work is very much related to the “mapping problem”
that was first mentioned by Puerta and Eisenstein [17].
They stated that the mapping problem is the key problem to
make model-based development acceptable for
programmers. The mappings mentioned include only
mappings from abstract to concrete models and between
models of the same level. No mappings from concrete to
abstract models are mentioned in their paper. This was
carefully analysed by Clerckx, Luyten and Coninx [2].
They have classified five mechanisms to solve the mapping
problem.

1. Model derivation

2. Partial model derivation

3. Model linking

4. Model modification

5. Model update.

Limbourg and Vanderdocnckt [11] address the problem by
supporting transformation of abstract models to more
concrete ones by graph grammars. The user interface
specification is based on UsiXML [24].

“UsiXML (which stands for USer Interface eXtensible
Markup Language) is a XML-compliant mark-up language
that describes the UI for multiple contexts of use such as
Character User Interfaces (CUIs), Graphical User Interfaces
(GUIs), Auditory User Interfaces, and Multi-Modal User
Interfaces. In other words, interactive applications with
different types of interaction techniques, modalities of use
and computing platforms can be described in a way that
preserves the design independently from peculiar
characteristics of physical computing platform”[24]. It
seems to be that UsiXML could be a living standard to
express models. It can play the role, which XIML [29]
originally wanted to gain.

The initiative for XIML started in 1999 and was focused on
device-independence primarily of mobile devices. XIML is
model-based but it needs a specific tool (converter) to
create a specific type of user interface. Our tool DiaTask [6]
was developed to make use of XIML. Task models, user
models, and object models with our metaphor of artefacts
and tools are represented as XIML specifications. However,
there seems to be no further support for XIML. Still there is
a lack of tool support. This is especially true for designing a
concrete user interface. That was the reason for our group
to look for user interface specifications, which are already
supported by tools. We found XUL as a candidate for that.

XUL [5,14] was presented in 1999 by the Mozilla project to
specify Graphical User Interfaces of the Mozilla-browser in
platform-independent matter. XUL allows the specification
of interactive objects like buttons, labels, and text fields.
We can find these objects in tools for creating GUI’s like
Java.AWT and Java.Swing.

Based on an existing project for eclipse a GUI editor for
XUL was developed [27]. It was built in such a way that
co-operation wit task models and generated user interfaces
became possible. The following example will demonstrate
how this editor can be incorporated into the development
process of interactive software.

EXAMPLE OF A DEVELOPMENT PROCESS OF A USER
INTERFACE
To demonstrate the process of developing applications with
our tool-set, we would like to show standard example,
which is a mail-managing system. This system is able to
manage received mails, i.e. to store them and display at
request, and also to send new mails.

Initial Task Model

Figure 2 – Initial Task Model

Initial requirements engineering might have resulted in the
CTTE-task model represented in Figure 2. According to
this model a user may either read his mail, or write a new
one. To read his mails, he has to select a specific mail from
a list that is generated and presented to him by the
application. Once he has selected a mail he gets its content
displayed. Select and display are consecutive subtasks of an
iterative tasks that can be cancelled at any time.

Writing mails is modelled in a similar manner. After a user
decides to write a mail he has to enter the iterative task
produce mail, where he is requested to compose a new mail
and, after finishing this, the application will send it away.
This sub-task may also be cancelled at any time.

From Task Models to Dialog Graphs
While there is currently no satisfying way of an automatic
generation of dialog graphs, our tool “DiaTask” (see e.g.
[18],[4]) can be used to create them manually.

By using DiaTask, a designer at first has to decide, how
many views are desired, and whether each of them is
modal, single or multiple. Next step is to assign relevant
tasks to views. The underlying task model determines the
set of tasks, which can be distributed on views. Thereafter
the designer has to model transitions between tasks and
views. DiaTask does support necessary operations to do
this.

 63

For this example a decision was made to use 4 different
views. A start screen, where a user decides whether he
wants to read or write a mail, a single view for reading
mails, a multi view for writing a mail and a modal dialog
was designed to visualize progress during send operations.

The resulting dialogue-graph is shown in Figure 3. One
might notice that no task is attached to the fourth view
(send progress). It was added due to a technical design
decision to have this window visualizing the progress of
sending a mail. There was no task in the task model forcing
to have this view.

Figure 3 –Dialog graph for sample application

From Dialogue Graphs to Abstract Prototypes of User
Interfaces
On a given a dialog graph DiaTask can generate an initial
abstract prototype in a WIMP style that mainly reflects the
navigation structure of the user interface. Windows are used
to represent views and elements of the views are mapped to
buttons as can be seen in Figure 4 for the example dialog
graph of Figure 3. Other task-element mappings can be
achieved by applying a different presentation model.

This generated AUI is stored in XUL format. It is possible
to animate the designed dialog graph, for example for
testing purposes. When animating, DiaTask uses the before
generated XUL to have a graphical representation for each
task.

Figure 4 - Pre-Generated Views

Beside its original purpose to carry layout information, each
XUL element contains control attributes. Of special
relevance is an identification attribute (id) of the associated
task. This id is generated by DiaTask while editing the
dialog graph and is unique for each task. It allows a trace

back of interactions on the final graphical user interface to
the corresponding task. Other attributes beside “id” are used
to mark and track changes in task-view assignments.

From Abstract Prototypes to Concrete GUIs
Following the generation of abstracts user interfaces (AUI)
for testing the dialog structure; in a next step concrete user
interface (CUI) is to be designed.

We can support this step with our XUL editing tool (XUL-
E) [27]. It was developed as a plug-in for the rich-client
platform “Eclipse” [69]. Beside its graphical editing
features its main purpose is to support our evolutionary
approach. For that some information exchange between
XUL-E and DiaTask is necessary. This is handled by a
slightly enhanced version of the XUL language, which is
called XULM. Enhancements include the possibility to

• store multiple views/windows in one file,
• define a repository for pre-designed components
• define placeholders that refer to these components

and
• other pattern related meta-information

The editor XUL-E itself is under continuing development,
and is currently able to edit most layout-affecting XUL
elements.

XUL-E uses DiaTask’s generated AUI as starting point for
layout refinements. The basic idea of an integrated editing
process, as presented here, is to edit by replacements. To
design the user interface for a certain task, one can replace
its current visualization by another one.

A user interface designer has to proceed in the following
way: At first he has to select a visualization (graphical
element) of a task (e.g. a button), choose “replace”, and
select via “drag & drop” a graphical element or a pre-
designed component that replaces the original one.
Proceeding in this way makes it possible to maintain any
task-related attribution of an element and accordingly keep
connections to the task model.

In the example application we now replace buttons in the
abstract user interface specification by other more
appropriate ui-elements. In view number 2 e.g. the button
“List Mails” is replaced by a tree structure and a list box,
whereas the button “Display selected Mail” is replaced by
three labels and some text displayers. “Select Mail” is
exchanged by an “OK_Help_Cancel”-component (see
Figure 5).

Replacing a single element, like a button for example, by a
more complex component, raises the problem of where to
attach task-related information to. While it would be
possible to actually apply these data to every element of a
complex component, this is probably not the desired
behaviour. Also it is imaginable that components contain
visualization stubs for referencing other than the current
task. Therefore XULM offers fine-grained control on this
matter.

 64

Figure 5 - Designed GUI for Select & Read

An element inside a pre-designed component may be
marked whether it should have task-control-data applied or
not. The default assumption is that they have not to be
applied (value = “none”). A second option is “implicit”,
meaning to apply any task-control-data of the replaced
element. As a third option the value “explicit” can be
defined, to define that the marked element in this
replacement requires user interaction. A user has to decide,
whether to delete this element, as it is currently not needed
or to set manually, which task this element belongs to. In
this case, as consequence it might be necessary to adapt the
underlying dialog graph and even the task model. Both
cases (delete/manual) require a consistency check. The tool
DiaTask is more appropriate for this purpose than XUL-E,
therefore those checks are done there.

For logical and organizational reasons XULM offers to
group components into packages. Those packages again can
contain packages, creating a hierarchy in this way.
Packages are stored in repositories – currently XULM-files
– which can be referenced from any other XULM file and
are dynamically loaded by XUL-E or any other tool that
makes use of XUL-E’s engine.

As each package can contain multiple components, it is
conceivable to group different visualizations for the same
task(s) into one (sub-) package. To support this approach,
one component of a package may be declared as default
component.

Generally a reference is defined in terms of XULM
placeholder-elements. XUL-E’s engine determines the
component that is referenced and inserts the XUL content
of this component into the view. By referencing a package,
its defined default-component would be used for

visualization purposes. Beside this, explicit referencing of
a single component is supported too.

Thus XULM provides two ways to adapt a CUI to different
contexts-of-use, either by using a different repository or by
overriding package defaults.

For the example application, five components were created,
which were grouped into two packages. The view “Select &
Read” was designed using components as replacements. A
component consisting of a tree and a listbox replaced the
button of task „List Mails“. Button “Select Mail” was
exchanged by an “OK_Help_Cancel”-component and
button “Display Selection” consists now of three labels and
some text displayers. The result is shown in Figure 5. Note
that sample texts have been integrated for demonstration
purposes only.

After redesigning views, DiaTask can still be used to
animate the dialog graph. At this point it is possible to
discuss the application based on a concrete design instead
of more abstract – button-represented – tasks.

The animation of the dialog graph becomes "more
readable" for users and is more appropriate for discussions.
Figure 6 shows an animation state, where a user writes a
mail. The simulation engine of DiaTask is currently
restricted to a subset of XUL-E’s capabilities, so there is
some difference in the views appearances.

Figure 6 - refined abstract prototype of Fig. 4 in animation
mode

EVOLUTION OF MODEL
On an animated walk-through different problems of the
application could be identified. Examples are missing
functionality that has to be added, tasks that better are
associated to another view and redundant or unnecessary
tasks, which have to be eliminated. These modifications
will be executed on task or dialog model level, thus in our
approach DiaTask is the tool responsible for that.

While modifying views, DiaTask tracks the individual
changes to each views and marks the kind of change by
XULM attributes. On view level a change can be an added
or removed task, or transitions between tasks were changed.

After editing of task and dialog model is finished, XUL-E
will get started to apply the changes to the CUI. XUL-E
shows every modified view, and highlights the changes that
applied to these.

 65

APPLYING A UI-PATTERN
The outlined approach also enables us to make use of ui-
patterns to design the CUI. To integrate patterns into XUL-
E, its already presented concept of packages and
components is used. Pattern instances are pre-arranged as
components and stored in a repository, they are applied to
view elements by replacing just as any other component.

In following section we enhance our sample application by
using a user-interface pattern. We will apply the “wizard”-
pattern to our application.

The “wizard” pattern requires constructing a navigation
structure that guides a user step by step through every
necessary operation to achieve a specific goal. We are
going to use a simple instance of this pattern that guides a
user through entering text properties, one per page, and
allows him to call specific context help on each property.
In context of our example we will use it for entering
administrative data to access a user’s mail account.

At first we have to extend our task model with specific
tasks for entering each property, e.g. “Enter Name” and
“Enter E-Mail”. A possible resulting task model is
presented in figure 7.

Secondly we use DiaTask to add a view that will be the
start view of our pattern usage. All “enter …”-properties are
assigned to this view. Also a transition from the start view
to our newly created view is added. Note that this last
modification is marked via XULM. XUL-E will force a
designer to apply this change on CUI level, i.e. redesign
this view to incorporate this new task. After modifications
are finished the dialogue model of figure 8 might be a
result. With it, DiaTask creates a first prototype of our
property-entering dialog, consisting of buttons, similar to
that of figure 4.

Figure 7 – Enhanced task model, including property input
tasks

Next, XUL-E is started to edit the new view, and of course
as already mentioned the start view. We now want to apply
“wizard” pattern to these buttons and with that to replace
each of these buttons with a single view containing a text
input field and let these created views be interconnected by
transitions to the respective predecessor, successor and the
last of created views, which should be the “apply”-view.

To achieve this we use a pre-designed component that
contains an instance of “wizard” that visualizes every single
task in above described manner. Details on the construction
of such a component will follow.

Figure 8 – Dialogue graph including property input

A designer now has to select all the tasks he wishes the
pattern instance applied to, and he has to do this in the same
sequence in which he wishes the separate pages of the
wizard to appear. For our example we chose the sequence:
“Name”, “Email address”, “Account” and “Apply”. Now
as last step all these selected tasks are replaced with the
visualization defined within the replacing component.

In principle these replacements follow the already
mentioned procedure for replacing a view element with
another one. Differing procedures are covered in greater
detail in the following section.

The result of our replacement is 4 separate views, whose
transitions between each other are already defined on
XULM level. Figure 9 shows the effect of the
transformation to our applications dialog model.

Figure 9 –Dialogue graph after pattern transformation

 66

One can see that view “apply” does not behave as necessary
for the application to run. Therefore manual refinement is
needed. The view’s task “Next” probably would be
removed, and for “Finish” a transition to “Apply” defined.
Transition for task “Apply” should be back to view “Init
Screen”.

After these fixes are done, each view can be individually
designed as described earlier, including further
replacements or the appliance of other patterns.

At the end of this “transform – refine – design” cycle, the
application prototype can still be animated, e.g. to verify
and test the effects of pattern application. All tasks and the
related GUI elements have still their association to the
application’s task model.

DEFINING A PATTERN INSTANCE AS COMPONENT
In the previous section we used an already existing
component that implemented a “wizard” pattern. In the
following is outlined how such a component is defined.

A pattern instance, in our approach, consists of a basic
layout that is created using XUL and has task-control data
that defines which elements get what kind of task-data
applied. Furthermore a component can have sub dialog
models assigned, which get integrated into an applications
dialog model by applying the component, currently this is
restricted to very basic internal view transitions.

All these information are stored within XULM files that
serve as component databases. XUL-E and DiaTask will
access these databases to execute their respective
operations.

Just like any other component, pattern instance components
(PIC) can make use of placeholders to import other
components into their design. Unique to PICs is that they
can be used to replace more than one element at once.

On such multiple replacements it is possible to access and
use task-data of each belonging task separately. Potentially
we will also integrate a basic scripting feature to further
increase user control over the replacement process.

A PIC definition uses a lightweight description-language
and consists of the following:

1. Input:

a. Parameter type is either single tasks or
lists of tasks

b. Input parameter need to be defined with a
name and declare the type they are of

c. Input parameter can have a short
description

2. Operations:

a. A “foreach”-loop is supported that
traverses a tasklist and executes the loop-
body as often as there are task in the list;
In the n-th loop run, declared loop-
variable points to the n-th task in list

b. An IfDef-Else-EndIf construct may be
used to handle unset values

3. Accessible object information:

a. A loop-variable knows about start, last,
previous, next and the current element

b. Task objects have an id, view (if they are
associated to any), name and a transition
target

c. View objects have an id and a name

d.

The output of a PIC based transformation is always of type
XULM.

UI - Pattern

Task[s]

Figure 10 – Visualization of relations between Pattern, PIC
and XUL-E

Figure 10 illustrates idea of how we support the use of ui-
patterns in our approach. A PIC is an implementation of an
abstract pattern, but still cannot be used for visualization. It
has to be instantiated; which is initialized with tasks from
XUL-E the result of the transformation replaces those tasks.

The definition of the previously used PIC “wizard” is
presented in Listing 1. It can be seen that XULM and XUL
are mixed in one file. Packages and placeholders have also
been used, so it is also an demonstration of these concepts.

For increased readability and to reduce complexity some
parts have been left out, e.g. XML-Namespaces and designs
for irrelevant components.

PIC XUL-E

CUI

 67

<guidefinitions>
<components>
 <package name="uipatterns" hasDefault="false">
 <component name="wizard"
 isPatternInstance="true">
 <inputTask paramName="tasklist"
 paramType="taskListType"
 paramShortDescription=
 "Ordered List of Tasks" />
 <opForEach source="tasklist"

loopPointer="#current">
 <window orient="vertical">
 <hbox>
 ... Logo and Label ...
 </hbox>
 <hbox>
 <label
 processTasks="true"
 value="#current.task.name"
 TASK_DATA="implicit"
 />
 <textbox TASK_DATA="implicit">

Value here
 </textbox>

 <button value="Help on this matter"
 TASK_DATA="implicit" />

 </hbox>
 <hbox>
 <placeholder
 usepackage="defComp.prev_next_finish"
 defaultvalue="taskaware"
 />
 </hbox>
 </window>
 </opForEach>
 </component>
 </package>
 </package>

 <package name="defComp" hasDefault="false">
 <package name="prev_next_finish"
 defaultvalue="nontaskaware">
 <component name="nontaskaware">
 <!-- plain design of the three buttons -->
 </component>
 <component name="taskaware"
 associatedDialogModel="">
 <hbox>
 <button label="Prev"
 transition="#current.prev.task.view" />
 <button label="Next"
 transition="#current.next.task.view" />
 <button label="Finish"
 transition="#current.last.task.view" />
 </hbox>
 </component>
 </package>
 </package>
 </components>
</guidefinitions>

Listing 1 – Definition of PIC “wizard” in a component

CONCLUSION AND FURTHER WORK
We have shown that the combination of the DiaTask and
XUL-E tools can support model-based development of user
interfaces. Starting with a task model a designer can
interactively create and design abstract and concrete user
interface for an application. As the resulting specifications
for AUI and CUI are in XUL format, there is even a chance

of converting them into native code for programming
languages by using specialized compilers.

Furthermore we proposed a method for integrating ui-
patterns into the overall process. Transformations
templates, attributed with tasks, serve as instances of
patterns that can interactively be applied to a concrete user
interface element or an abstract user interface element. A
working example utilizing this approach has been
presented.

In future it has to be checked for which groups of ui-
patterns our method is appropriate and for which it might
not or only with difficulties be usable. An example for the
latter group is the “Breadcrumb”-pattern, an instance of it
hardly seems to be realizable.

It is conceivable that more complex patterns, or even a
more sophisticated “wizard” pattern instance, require
enhancements to current scripting possibilities as well as to
the current model changing facilities of XUL-E in
cooperation with DiaTask, which in both cases cover only
basic operations at the moment.

We plan not only to design a pattern interface component
and equip it with some script commands, but also to
connect it with a complete task or at least dialog model. On
applying such a PIC to a task, or a set of tasks, the models
would get plugged into the existing models of the
application.

Such heavyweight PIC’s probably require an own editor,
which then also should be created. The next step here
would then be to build and maintain a PIC library.

Also another approach for combining DiaTask and XUL-E
might be worth some testing. DiaTask could be used to
assign stereotypes, i.e. desired patterns, to certain views or
group of tasks. It afterwards could call XUL-E’s engine to
convert these marked views into instances of the selected
pattern. This would also result in an AUI with patterns
applied.

A technical issue is to choose another script language, for
example Velocity [25], instead of creating and maintaining
an own one.

REFERENCES
1. Cameleon: http://giove.cnuce.cnr.it/cameleon.html.

2. Clerxkx, T.; Luyten K.; Conix, K.: The Mapping
Problem Back and Forth: Customizing Dynamic Models
while preserving Consitency, Proc. TAMODIA 2004, P.
33-42.

3. Constantine L.L: Canonical Abstract Prototypes for
Abstract Visual and Interaction Design, in Jorge J. A. et.
al (Eds): Proceedings DSV-IS 2003, LNCS 2844,
Springer Verlag, Berlin, 2003, P. 1-15.

4. CTTE: The ConcurTaskTree Environment.
http://giove.cnuce.cnr.it/ctte.html.

 68

http://giove.cnuce.cnr.it/cameleon.html
http://giove.cnuce.cnr.it/ctte.html

17. Puerta, A.R. and Eisenstein, J.: Towards a General
Computational Framework for Model-Based Interface
Development Systems. Proc. of the 4th ACM Conf. On
Intelligent User Interfaces IUI’99 (Los Angeles, 5-8
January 1999). ACM Press, New York (1999), 171–178

5. Deakin, N.: XUL Tutorial. XUL Planet. 2000.

6. Dittmar, A., Forbrig, P.: The Influence of Improved
Task Models on Dialogues. Proc. of CADUI 2004,
Madeira, 2004.

7. Dittmar, A., Forbrig, P., Heftberger, S., Stary, C.: Tool
Support for Task Modelling – A Constructive
Exploration. Proc. EHCI-DSVIS’04, 2004.

18. Reichart, D.; Forbrig, P.; Dittmar, A.: Task Models as
Basis for Requirements Engineering and Software
Execution, Proc. of. Tamodia 2004, p. 51-58

8. Dittmar, A., Forbrig, P., Reichart, D.: Model-based
Development of Nomadic Applications. In Proc. of 4th
International Workshop on Mobile Computing, Rostock,
Germany, 2003.

19. Sinnig, D., Gaffar, A., Reichart, D., Forbrig, P., Seffah,
A.: Patterns in Model-Based Engineering, Proc. of
CADUI 2004, Madeira, 2004.

20. Sinnig, D., Javahery, H., Forbrig, P. and Seffah, A.,
“Patterns and Components for Enhancing Reusability
and Systematic UI Development”, in Proceedings of
HCI International, Las Vegas, USA, 2005.

9. Eclipse: http://www.eclipse.org.

10. Elwert, T., Schlungbaum, E.: Dialogue Graphs – A
Formal and Visual Specification Technique for
Dialogue Modelling. In Siddiqi, J.I., Roast, C.R. (ed.)
Formal Aspects of the Human Computer Interface,
Springer Verlag, 1996.

21. Teuber, C.; Forbrig, P.: Modeling Patterns for Task
Models, Proc. of Tamodia 2004, Prague, Czech.
Republic, p. 91-98.

11. Limbourg, Q., Vanderdonckt, J.: Addressing the
Mapping Problem in User Interface Design with
USIXML, Proc TAMODIA 2004, Prague, P. 155-164

22. TERESA: http://giove.cnuce.cnr.it/teresa.html

23. UIML Tutorial, http://www.harmonia.com

12. López-Jaquero, V.; Montero, F. ; Molina, J.,P.;
González, P.: A Seamless Development Process of
Adaptive User Interfaces Explicitly Based on Usability
Properties, Proc. EHCI-DSVIS’04, p. 372-389, 2004.

24. UsiXML: http://www.usixml.org/

25. Velocity: http://jakarta.apache.org/velocity/

26. Wilson, S.; Johnson, P.: Bridging the generation gap:
From work tasks to user interface design, In
Vanderdonckt, J. (Ed.), Proc. of CADUI 96, Presses
Universitaires de Namur, 199, p. 77-94.

13. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.:
Derivation of a dialog model from a task model by
activity chain extraction. In Jorge, J., Nunes, N.J., e
Cunha, J.F. (ed.), Proc. of DSV-IS 2003, LNCS 2844,
Springer, 2003.

27. Wolff, Andreas: Ein Konzept zur Integration von
Aufgabenmodellen in das GUI-Design , Master Thesis,
University of Rostock, 2004. 14. Mozilla.org: XUL Programmer’s Reference 2001.

28. Wolff, A.; Forbrig, P.; Dittmar, A.; Reichart, D.:
Linking GUI Elements to Tasks – Supporting an
Evolutionary Design Process, Proc. of. Tamodia 2005,
Gdansk, Poland, p. 27-34

15. Paterno, F.; Mancini, C.; Meniconi, S:
ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models, Proc. Interact 97, Sydney,
Chapman & Hall, p362-369, 1997.

29. XIML: http://www.ximl.org 16. Paterno, F., Santoro, C.: One Model, Many Interfaces.
In Proc. of the Fourth International Conference on
Computer-Aided Design of User Interfaces, p. 143-154.
Kluwer Academics Publishers, 2002.

30. Paquette, D.; Schneider, K.: Interaction Templates for
Constructing User Interfaces from Task Models, Proc. Of
CADUI 2004, Madeira Island, Portugal, p. 221-232

 69

http://www.eclipse.org/
http://giove.cnuce.cnr.it/teresa.html
http://www.harmonia.com/
http://www.usixml.org/
http://jakarta.apache.org/velocity/
http://www.ximl.org/

From Requirements Analysis to Architecture Evaluation of
a Ubiquitous Multimodal Multimedia Computing System

Manolo Dulva Hina
LATIS1 and PRISM2 Laboratories
1École de technologie supérieure

2Université de Versailles-St.-Quentin-
en-Yvelines

1-514-890-1092

manolo-dulva.hina.1
@ens.etsmtl.ca

Chakib Tadj
École de technologie superieure

1100, rue Notre-Dame Ouest
Montréal Quebec H3C 1K3 Canada

1-514-396-8555

ctadj@ele.etsmtl.ca

Amar Ramdane-Cherif
Université de Versailles-St.-Quentin-

en-Yvelines
45, avenue des États-Unis

78035 Versailles Cedex, France
33-1-39.25.43.12

rca@prism.uvsq.fr

ABSTRACT
Our ubiquitous multimodal multimedia (MM) computing system
selects the appropriate media and modalities based on the user’s
context and user’s profile. The overall user context is decided
based on four parameters, namely the user’s location, the noise
level in the user’s workplace and the presence or absence of other
people in the user’s workplace (a.k.a. safety factor), and the
computing device used by the user. The user’s profile identifies if
the user is a regular user or a handicapped. The user’s handicap
determines if the user is manually handicapped, visually impaired,
a deaf or a mute.

Machine Learning (ML) is concerned with the development of
techniques allowing the computer to acquire knowledge. In our
work, a ML component resolves all questions related to the
system’s selection of media and modalities with reference to the
user’s situation. This ML component uses a priori training sets
which contain records of scenarios. Every scenario record is
composed of a pre-condition scenario (i.e. the user context), and
its corresponding post-condition scenario (i.e. the media and
modalities that are appropriate for such context).
Given a certain context, the media and modalities listed in the
post-condition scenario are set for activation. A problem arises
when a media or modality is found missing or defective which
could potentially cause the system to stall or to crash. Our system
uses its acquired knowledge to find a replacement to the defective
component. To do so, the ML agent consults its knowledge
database which contains a list of replacements to a failed
component. If the list is empty or when the selected
device/modality and all its replacements have all failed, the ML
system is trained; each training yields one device included in the
list. The more the ML system is trained, the more resilient the
system becomes over components failure.
This paper demonstrates the design of a fault-tolerant ubiquitous
MM computing system. The requirements analysis is undertaken
by considering the quality attributes desired by different
stakeholders. We use the attribute-driven design method in the
requirement analysis and Architecture Tradeoffs Analysis Method
in evaluating the system architecture.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific Architecture
– requirements analysis, attribute-driven design, quality

attributes, software architecture, Architecture Tradeoffs Analysis
Method (ATAM).

General Terms
Documentation, Design.

Keywords
Multimodal multimedia system, incremental learning, activity-
driven design, quality attributes, software architecture, ATAM.

1. INTRODUCTION
A multimodal user interface allows user to do computing with
more than one mode of interaction. Indeed, incorporating
multimodality into a computing system makes it more accessible
to a wider range of users, including those with impairments. A
MM system in [1] combines two different types of data – one
coming from a multimodal source, usually demonstrated by
human action (e.g. speech, pointing object using an electronic
glove), and another coming from the usual media (e.g. keyboard,
mouse) – and the fusion of these data produces a new data that
has a completely different meaning to the system. Our work in [2]
selects the media and modalities that are deemed appropriate to
the user’s situation. The user’s situation is a function of the user’s
context and profile, and the user’s current environment and
hardware profile. To do this selection, the system adapts ML
process. Indeed, there is one system component that is responsible
for the resolution of any question concerning the media and
modalities selection. The knowledge acquisition of the ML
system is incremental – it is trained to new scenario and to new
media or modality component. The more it is trained, the more it
becomes reliable over different conditions. This paper is all about
the design of this system, from its requirement analysis to the
evaluation of its software architecture.

A ubiquitous system allows the user to continue working on an
interrupted task anytime and anywhere. In our work in [2], the
user’s task and profile as well as machine knowledge are all made
transportable form one computing environment to another,
basically “following” wherever the user goes. To realize ubiquity,
support for wired, wireless and mobile computing is imperative.

 70

2. RELATED WORK
The concepts of distributed computing merged with wired and
wireless or mobile computing were the foundations of ubiquitous
computing, sometimes known as pervasive computing [3].
Satyanarayanan’s work on the concepts of mobile information
access [4] and Coda [5] are important in pervasive computing, and
so does that of wireless networks [6]. Multimodal multimedia
computing [1] is about the fusion of data coming from the usual
media (i.e. keyboard, mouse), and modality that uses human
action (i.e. speech). Our ubiquitous MM computing system
(UMMCS) however is not involved in the fusion of these data;
instead ours selects the media and modality based on user’s
context and user special needs. Software architecture [7-9] is the
blueprint of the system that is to be built. Indeed, the essential
quality attributes could be viewed, analyzed and synthesized in
such blueprint even before building one. Important works related
to the achievement of the essential system quality through
software architecture include [10] and [11, 12]. The architecture
style or pattern [13] is also a factor in deciding which quality
attribute would be prioritized. In this paper, our architectural
framework along with detailed parts of the complete system
architecture is presented. A specific quality attribute that is
essential to the system is presented along with the stimulus that
could affect the system from obtaining such quality.

Our UMMCS is based on machine’s knowledge acquisition [14].
Its learning acquisition is progressive. Related work in machine
learning (ML) include [15], Learn Sesame [16], and
conversational agent [16]. Unlike that in [17], our work’s self-
repairing system through dynamic reconfiguration (DR) [18] is
incremental ML-related and so the system’s capacity to do self-
repair is a function of its acquired knowledge through training.
The more the system is trained, the smarter it has become.

This paper illustrates our UMMCS using the basic software
engineering practices – requirements analysis, system modeling,
architecture design and architectural evaluation.

3. SYSTEM REQUIREMENTS ANALYSIS
In this section, we present the beginning and the evolution of our
research work. Unlike the usual software project wherein a
specific client with specific needs would request a designer for a
system design that would realize the client’s needs, ours is based
on a classic model of an academic research work wherein the
student does most of the analysis, design and validation, and the
thesis supervisors act as the clients and stakeholders.

3.1 Statement of the Problem
The work by Djenidi et al in [1] considers the fusion of inputs
from a usual media (e.g. keyboard, mouse, etc.) and modalities
(e.g. speech, eye gaze, etc). Their combination produces a new set
of data that has different meaning from depending on whether
these inputs arrive at the same time, one after the other, etc.

In the research work mentioned above, the media and modality
for fusion are already identified. Indeed, a new problem arises
from such system. The following is the research question that
needs some clear answers:

• Given a certain computing environment, how can we select the
media and modalities so that we can realize the fusion of their
inputs?

Indeed, our new work is no longer in the fusion of media and
modalities input but rather on their correct selection based on
user’s computing situation. It is necessary to consider that one
specific media may not be present or is found defective in a
certain environment, and another modality could be completely
irrelevant in a certain situation, such as the speech recognition in
a noisy environment. An assumption that the needed media and
modalities are both present and functional or appropriate in a any
computing environment is wrong. Therefore, a scientific approach
for the selection of media and modalities based on the user’s
computing situation is needed.

3.2 System Requirements
There is a need to create a computing system that correctly selects
the media and modalities based on the computing environment
itself. The following are the analysis of the system requirements:
1. The media and modalities should be selected based on user’s

context. Among others, the context measure should consider
the location of the user and the noise level of the user’s
environment. The security of the user’s workplace should also
be taken into account.

2. Given the same context parameters mentioned above, the
media and modalities that are appropriate for a regular user are
completely different from the ones that are appropriate for the
disabled users (i.e. blind, deaf, etc.). Indeed, the user’s special
needs should be taken into consideration as well.

3. Given that a mobile user would be using different computing
environment and therefore different computing device (e.g.
PC, laptop, PDA, etc.), the media and modalities to be selected
must be appropriate for the computing device.

4. Considering that there are so many possible combinations of
user’s context, user’s special needs, and user’s computing
device, with each combination yields its media and modalities
selection, then the system to be built must “remember” each of
these “scenarios” so that when the same scenario happens
again in the future, the system could “act” accordingly and
intelligently.

5. For each scenario mentioned above, the media and modalities
that are selected for the scenario may or may not be available,
and may or may not be functional. In the event that a device
(i.e. a media or a modality) is missing or is found defective,
then the system should find its replacement if it intends to
remain fault-tolerant.

3.3 Requirements Definition
The system requirements mentioned above should be further
defined for clarity purposes. The following are therefore the
detailed definitions of the system requirements:

1. User’s Context – it refers to the overall assessment of user’s
situation which is based upon: (i) user’s location, (ii) the noise
level in the user’s workplace, and (iii) the security factor
which is the detected presence or absence of other people in
the user’s workplace.

2. User’s Special Needs – this should be one element of every
user’s profile. It would identify if the user is a regular user or a
handicapped. If handicapped, then the system should be
informed if the user is (i) manually disabled, (ii) visually

 71

impaired, (iii) a deaf, or (iv) a mute. In the event that the user
has more than one disability, then the media and modalities
that are appropriate for his case is the intersection of the media
and modalities that are appropriate for each individual
disability.

3. The Computing Device – this essentially identifies the type of
computer the user is utilizing. This could be a PC, a laptop or a
PDA.

4. Scenario – Every user scenario should reflect the cause and
effect combination, otherwise known as the pre-condition
scenario and the post-condition scenario, respectively. Hence,
the pre-condition scenario would be the combination of the
user’s context, special needs and computing device, and the
corresponding post-condition scenario would be the media and
modalities that are appropriate for the scenario.

5. Machine Learning – this refers to the machine’s acquisition of
knowledge. The knowledge to be acquired is the recognition of
the user’s computing situation (i.e. pre-condition scenario) and
the selection of appropriate media and modalities (i.e. post-
condition scenario). This knowledge has to be stored in a
repository (i.e. knowledge database) that could be accessed
wherever and whenever the user needs it. The learning system
should also consider a list of replacements for any failed
device in any given context.

The following subsection would provide further details for each
of these requirements.

3.3.1 The User Context
The details of each user’s context parameters are as follows:

1. The user location – this refers the detection of the user’s
whereabouts. We employ the use of a global position system
(GPS) attached to the USB port of the computer being used by
the user. There must be a software agent that should take
sample GPS readings (1 sample per minute); after 5 samples,
the agent yields a final result confirming the location of the
user. At the end, the agent would conclude if the user is (i) at
home, (ii) at work, or (iii) on the go, that is neither at home nor
at work (e.g. in the cafeteria, in a park).

2. The noise level – To measure the noise level in the user’s
workplace, there needs to be a sampling device that measures
the noise level and a software agent that collects the samples.
After 5 samples (i.e. 1 sample per minute), the agent should
conclude if the user’s workplace is (i) quiet, (ii) acceptable, or
(iii) noisy. The device used to measure the noise is the
BAPPU measuring device (www.bappu.com). A noise sample
could be any of the following: (i) 40 decibels (dB) or less =
quiet, (ii) 41 to 50 dB = acceptable, and (iii) 51 dB or more =
noisy. To accommodate every user’s perception of noise, a
user interface should be added in the design so that a user
could have the means to enter this own thresholds to suit his
noise perception.

3. The safety factor – this refers to the detection of how safe (or
risky) the user’s workplace is based on (1) the presence or
absence of other people in the vicinity of user’s workplace,
and (2) who is sitting in the user’s chair facing the computer.
To accomplish this, a software agent has to read samples from
two sensors, namely: (1) an infrared detector that detects the

presence of other people within the vicinity of user’s
workplace, and (2) a camera with retinal recognition that
detects if it is the legitimate user who is sitting in the user’s
seat. The results of these two sensors are combined together to
determine the safety factor in the user’s workplace. The agent
yields a final assessment that indicates if the safety factor is
either (i) good or ideal, (ii) acceptable, (iii) sensitive, or (iv)
bad, worse or worst. The calculation for the final assessment
will be provided in the next section.

3.3.2 The User Profile
The user profile (UP) will be a record containing vital computing
information about the user. Every user should have a UP. When a
new user is added to the system, the system creates a new UP for
him. In general, the UP should be dynamic; the user can modify
its contents whenever he wishes. The UP should be ubiquitous in
order to support the needs of a mobile user; hence this private
data structure is omnipresent, basically following the user
wherever he goes. For the purpose of initial system design, the UP
is composed of two parts, namely:
1. The user profile – this contains the user’s username, password

and the list of computing units the user utilizes including their
identifications (i.e. IP addresses) and their corresponding
schedules. Note that, in a ubiquitous and pervasive
environment, the user is moving from one environment to
another, and so we want to keep track of his location via this
part of the UP.

2. The user’s special needs – if applicable, the user has to indicate
the nature of his disability. This is necessary so that the system
could correctly select the media/modalities that are appropriate
for his situation. The default value is that the user is a regular,
non-disabled user.

3.3.3 The Machine Learning Process
The machine learning (ML) component of the system would
acquire knowledge on all possible combinations of user context,
user computing device and user’s special needs (also known as
pre-condition scenarios) and for each combination would select
the appropriate media and modalities (the post-condition
scenario). There is an a priori training set which shall be the
initial knowledge that the machine learns. As such, the machine’s
intelligence shall be limited to this set. For the machine to evolve,
its machine learning should be incremental, that is, one at a time,
on a situation by situation basis. For as long as there is something
new to learn, an incremental ML system continues its progressive
acquisition of knowledge.

Our ML system must also have its list of replacements to every
failed/missing device in any given context. Also, it must have
knowledge to evaluate the suitability of every media or modality
to any given context. Our work in [19] provides details to the
design of the incremental learning component of this system.

3.4 Modeling System Requirements
To model the system requirements, we use the Data Flow
Diagram (DFD) model which shows data processing as the data
flows through the system. The modeling is seen from the system’s
functional perspective. Figure 1 shows the level 0 of the DFD of
our system. Level 0 of the DFD demonstrates the ubiquitous MM
computing system (UMMCS) with all the inputs coming into the

 72

system and all the outputs produced by the system, and some data
repositories also indicated. In general, level 0 is too general that
the system being developed or modeled appears just as a nebulous
concept. Further details should be provided by designing extra
levels (i.e. level 1 up to level n) until system details are clear
enough for the interested stakeholders. Due to space limitations,
we could only show DFD up to level 1. Figure 2 demonstrates
level 1 of the DFD. The UMMCS is now partitioned into three
main components, namely: the Task Manager Agent (TMA), the
Context Manager Agent (CMA), and the History and Knowledge-
base Agent (HKA). Their functionalities are as follows:

• The Task Manager Agent (TMA) – it is responsible for the
management of user’s task and profile.

• The Context Manager Agent (CMA) – it is responsible for the
detection of user’s context and eventually the selection of the
appropriate media and modalities based on that context

• Knowledge History-base Agent (KHA) – it is the component
that handles the ML process, including its training and the
management of the knowledge database (KD).

Figure 1. Data Flow Diagram, Level 0 of the UMMCS.

Figure 2. Data Flow Diagram, Level 1 of the UMMCS.

4. ATTRIBUTE-DRIVEN
ARCHITECTURAL DESIGN

Software architecture is the structure of the components of a
program or a system, their interrelationships, and the principles
and guidelines governing their design and evolution over time.
The architectural framework in Figure 3 provides some idea of the
main components that comprise the system. This framework is

transformed into an architecture that satisfies system quality and
functional requirements. We use the attribute-driven design
(ADD) [20] methodology because our architectural design is
aimed at achieving the system’s desired quality attributes. The
ADD steps are as follows:
1. Choose the module to decompose
2. Refine the module according to these steps:

a. Choose the architectural drivers from the set of concrete
quality scenarios and functional requirements. This step
determines what is important for this decomposition.

b. Choose an architectural pattern that satisfies the
architectural drivers. Create the pattern based on the tactic
that can be used to achieve the drivers. Identify the modules
required to implement the tactics.

c. Instantiate modules and allocate functionalities from the use
cases and represent using multiple views.

d. Define interfaces of the child modules.
e. Verify and refine use cases and quality scenario and make

them constraints for the child modules. This step verifies
that nothing important was forgotten.

3. Repeat the steps above for every module that needs
decomposition.

Figure 3. The UMMCS architectural framework.

Here, we briefly describe the essence of ADD. The module
decomposition always begins with the whole system. Figure 4
demonstrates the transition from the general framework into a top
level decomposition. In Figure 4, the decomposition yields more
detailed components that interact with CMA; the sensors in
Figure 3 have been replaced by three sets of different sensors,
each is managed by its respective agent to produce an individual
context. The module decomposition process using ADD is
repeated until the architecture is detailed enough to see that it is
capable of withstanding all sorts of stimuli that could challenge
the system from achieving and maintaining its quality attributes.
To do so, each of the system stimuli (i.e. a stimulus is an event
that arrives, such as virus attack, that could make the system
unstable if not properly attended) is subjected to quality attribute
scenario. In general, we make every effort to make our system
able to withstand all sorts of stimuli, including the possible
breakdown of a sensor or a media or modality, and provide a
contingency system action when such a failure occurs. In effect,
doing so makes our system fault-tolerant. The architecture shown

Task
Manager

Agent

Context
Manager

Agent
sensors

Operating System

Knowledge
History-base

Agent

user data

user profile, user needs

user
context

machine knowldge ,
training

knowledge database

Input/Output
Devices &
Modalities

Selected and activated

ubiquitous information
(user data & knowledge

database)
Server 1

Server n

Server 2

Server 3

Task
Manager

Agent

Context
Manager

Agent

Knowledge
History-base

Agentsensors

Input/Output
Devices &
Modalities

Operating System
Amar’s Home

Amar’s Office

Sensors

Environment
Profile

User Database
Task

Manager
Agent

Context

User Profile
User Task
User Files

Computing Device

User

Media / Modalities
Selection

Knowledge
Database

A Priori Training
ML Training

Previous Knowledge

New Knowledge

Context
Manager

Agent

Knowledge
History-base

Agent

User Profile
User needs

Machine Knowledge
Training

Sensors

Environment
Profile

User Database

Ubiquitous Multimodal
Multimedia Computing

System
(UMMCS)

Context

User Profile
User Task
User Files

Computing Device

User

Media / Modalities
Selection

Knowledge
Database

A Priori Training
ML Training New Knowledge

 73

in Figure 4 is still far from showing the details of the complete
system. Our work in [21] gives more details about software
architectural design considerations.

Figure 4. The UMMCS after ADD first-level decomposition.

4.1 Quality Attributes and Attribute-
dependent Scenarios
Quality attributes (see Figure 5) are the functional characteristics
that the system being designed must possess. The software
architecture must demonstrate how these attributes could be
achieved. In general, some of the basic qualities that the system
must possess (i.e. quality attributes) are the following: (i)
availability, (ii) modifiability, (iii) performance, (iv) security, (v)
testability, and (vi) usability. Availability is about techniques of
diagnosing, solving and preventing software or hardware faults
and failures. Modifiability is about installing change to the
system, and the questions of how, when and who will carry this
out. Performance is making sure that the system is able to respond
accordingly when an event occurs. Security is about protecting
the system and its users and finding ways to deny access to
unauthorized users. Testability refers to that quality of the system
where the designers could easily detect fault as they envisioned it
to be. Usability is the capacity of the system to do its task with
ease, and the kind of support it provides to the users.

Pervasive MM Computing System
Quality Attributes Utility Tree

Quality
Attributes

Performance

(e.g. Latency,
Throughput)

Availability

(e.g. Hardware
Failure,

Software
Failure)

Security

(e.g. Data
confidentialit

y, data
integrity)

Usability

(e.g. system
efficiency,

user
support)

Modifiability

(e.g. change
code, etc.)

Testability

(e.g. effectiveness
of test to

discover faults)

Figure 5. Some basic system quality attributes.
For each of these quality attributes, there is a need to demonstrate
how the system would be able achieve such quality attribute.
Indeed, the system has to be subjected to a scenario that tests if
indeed the system is well designed to achieve each desired quality
attribute. This scenario is called the quality attribute scenario
(QAS). Hence, if the system is to achieve the 6 basic quality
attributes, it needs to be subjected to 6 different quality attribute
scenarios. Before doing so, the six elements of a QAS are first
described below:
(1) The stimulus. A stimulus refers to an event that arrives to

the system and it must be acted upon. In general, a stimulus
is an input to a component; there may be two or more stimuli
that could arrive at a given time. A stimulus could be as
simple as the user’s keyboard input or a computer virus that
intends to attack the network.

(2) The source of the stimulus. Basically, it refers to the source
of the input data (i.e. the one that invokes the stimulus). A
source of a stimulus could be a user, a program procedure, or
a system component.

(3) The environment. This is the condition in which the stimulus
has occurred. A snapshot of the environment as the stimulus
arrives is important in determining how it will respond to the
stimulus. For example, the system’s reaction with respect to
the stimulus is obviously different if it is previously idle than
if it is previously overloaded.

(4) The artifact. This refers to the object that is affected by the
stimulus. The artifact could be as simple as the file, or as
complex as a subsystem or the entire Intranet network.

(5) The response. It refers to the processing or the activity that is
undertaken by the component or by the environment after the
arrival of the stimulus. For the user’s input, the response
could be as simple as calling a procedure to do some
calculations. For a virus attack being detected, the response is
either protecting the network or killing the virus.

(6) The response measure. This refers to the attribute-specific
constraint that must be satisfied by the response. For a
performance-related response, such as a website being
uploaded into the web browser, the response measure is to
have this site uploaded in the next 2 seconds.

Table 1 illustrates the QAS for the six basic quality attributes. The
table demonstrates general scenarios that could affect the
system’s quality attributes in general. For example, the
availability of the system (i.e. keeping itself functional amidst
varying conditions and faults) could be challenged if some
components become faulty, hence, faults are the stimulus. The
desired response of the system is to keep itself functional,
probably by disabling the defective component. The constraint of
this kind response is time. That is, how long could it stand to keep
itself functional and not able to stall or crash? If the response is
making the defective component functional, then the constraint of
the response is the repair time of the faulty component. In an
interactive environment, for example, the system designer should
know that a component repair time of several minutes is
unacceptable to the end user.
In general, the QAS in Table 1 illustrates stimulus considerations
that could challenge the system in achieving modifiability,
performance, security, testability and usability. Knowing the

Task Manager Agent

Context Manager Agent

Knowledge History-base
Agent

user profile , user needs

Image/Pattern
Recognition

Agent

Sound
Monitoring

Agent

User
Location

Agent

Risk factor
(constraint :

5 min.)

Noise level
(constraint :

5 min.)

User
location

(constraint :
5 min.)

Infrared
detector &

camera

BAPPU Noise
Measuring

Device

GPS on the
system

Context measure
(constraint : 5 min.)

Context measure
(constraint : 5 min.)

Context measure
(constraint : 5 min.)

Overall context

pre-condition scenario ,
request for ML training

post-condition scénario ,
list of replacements

useruser data
knowledge database

Device/Modality Agent

Device i
(1 ≤ i ≤ n)

post-condition
media/modalities

search , ping, test

echo, result

(n number of devices)

component failure report

user selection

Machine Learning
Training Process

training

components for activation

Media Devices
Configuration Agent

activate

Server

 74

stimulus and the artifact affected by the stimulus, the system
designer could adapt certain tactics and methods so that the
system response to the stimulus is effective and efficient. Table 2
lists down some of the tactics to achieve system quality attributes.
Within a tactics, there are two or more methods to choose from;
designer must choose one that best fits his system.

Table 1. The quality attribute scenarios.

Table 2. Tactics /methods to achieve system quality attributes.

To illustrate how a certain attribute can be achieved, consider the
security considerations of the UMMCS in Figure 6. The UMMCS
should restrict access to intruders and protect the system itself
from virus attacks. Figure 6 illustrates the tactics embedded in the

system design. Several methods that could be used to authenticate
users are shown. A legitimate user can then access network data,
and utilizes computing applications and services. A workstation
could communicate within the network system via encryption in
order to maintain data confidentiality. Our intended system would
create an intrusion detection system in order to protect itself from
attacks. Firewall within workstation is necessary to protect itself
from intruders. Firewalls restrict access based on message source
or destination port because messages from unknown sources may
be a form of an attack. Finally, each server would maintain a
redundant copy of network data in order for the system to
maintain data integrity. Maintaining audit trail is necessary in
order to track down hackers and attackers and to bring back the
system to recovery.

workstation
Amar

(legitimate user)

hacker
(illegitimate

user)Firewall

Authenticate Users:
Password, one-time password,
digital certificate, or biometric

information

Maintain data
confidentiality:

Encryption
Detect attack:

Intrusion detection system

Recover from
attack:

Maintain audit trail

Maintain data
integrity:

Redundant copies
of information

Tower box

#nServer

Server

Server

Server

#1

#2#3

Figure 6. Applying security tactics in UMMCS.

Figure 7 demonstrates the ADD-decomposition of the Context
Manager Agent. In this diagram, the availability attribute in the
design is visible.

Figure 7. First level ADD-decomposition of CMA.
For example, in the event that any of the context sensors fail, the
dynamic context agent would be invoked. To prevent the system
from stalling or crashing due to sensor failure (resulting in an
undeterminable overall context), the most relevant historical data
recorded by the sensor would be used and the user is informed

Check Retinal
Camera

Read Camera
Values

Get Historical
Data

Get User
Input

Static Image /
Pattern

Recognition
Agent

Dynamic
Image/Pattern
Recognition

Agent

Check Infrared
Detector

Read Detector
Values

Get Historical
Data

Get User
Input

Static Image/
Pattern

Recognition
Agent

Dynamic
Image/Pattern
Recognition

Agent

Safety Factor
(constraint: 5 min.)

OK

Retinal
Camera

Infrared
Detector

Failure FailureOK

Read Noise
Measure (dB)

BAPPU Noise Measuring Device

Get Historical
Data

Get User
Input

Static
Sound

Monitoring
Agent

Dynamic
Sound

Monitoring
Agent

Noise Level
(constraint: 5 min.)

Check BAPPU
Device

GPS Device

Check GPS

Read GPS
Coordinates

Get Historical
Data

Get User
Input

Static User
Location

Agent

Dynamic
User

Location
Agent

OK
OKFailure Failure

User Location
(constraint: 5 min.)overall

context

Context Manager
Agent

 75

about it. If the sensor is just fine, it would be read as usual to
obtain the context measure. In the end, all these context agents
would have reasonable results for the CMA to determine the
overall context. Also, note that performance constraints is
imposed (i.e. 5-minute time constraint) for the context agent to
produce the necessary context assessment.
Again, due to space limitation, we could not provide the
decomposition of the entire ubiquitous MM computing system.
However, the concept that is applied on Figure 6 is the same one
that should be applied in the decomposition of all system
components.

4.2 Architectural Views

In concept, a view is a representation of a coherent set of
architectural elements. It consists of a representation of a set of
elements or components and the relationship among them. In
some literature, architectural view and structure are sometimes
used interchangeably. For an architectural design to demonstrate
the necessary information of the interested stakeholders, one
architectural view is often not enough; there needs to be two or
three (or more) so that the management, analyst, programmers,
end user and customer could see, understand and appreciate the
architectural design based on each one’s perspective.
In general, architectural views can come in three types, depending
on the broad nature of the elements that they show:
1. Module. The elements are generally the modules, which are

the units of implementation. Modules are code-based way of
considering the system. This view shows the relationship
among different modules.

2. Component-and-Connector. The elements are generally the
runtime components (i.e. units of computations) and
connectors (i.e. communication vehicle or protocol between
elements). It satisfies the questions related to some shared
data stores, parts of the system that are replicated, and parts of
the system that run in parallel.

3. Allocation. This structure or view shows the relationship
between software elements and the hardware or files that is
created, used or executed.

Figure 8 illustrates the first-level modular view of the UMMCS.
In the diagram, we have divided the complete system into three
major architectural components: the TMA, the CMA, and the
HKA. Each of these components is further divided into some sub-
components. The relationship for this 1st-level decomposition is
the lower module is a sub-module of the upper module. In
general, the designer would create several decompositions until
all modular elements are enumerated.
Figure 9 shows the first-level component-and-connector view of
the UMMCS. The software structure shown in the diagram is far
more complex than the one shown in the simple modular view of
Figure 8. In Figure 9, a combination of client-server structure,
process structure, concurrency and shared data structures are
shown. For example, in the CMA, we could see that the processes
“user location detection”, “sound monitoring process” and “safety
factor detection process” are all running concurrently. This is
because each of these context activities must be executed in
parallel, and their outputs are sent as inputs to the CMA in order
that it can detect the user context correctly.

In general, the component-and-connector view is useful for
performance analysis and load balancing for the client-and-server
software structure. For process structure, the view is useful for
performance analysis. For concurrency structure, the view is
useful in identifying where resource contention could exist, and
where thread may fork, join, be created or be killed. Shared data
structure is useful for data integrity analysis.

Figure 8. First-level Modular view of the UMMCS.

Figure 9. First-level component-and-connector view of the
UMMCS.

Figure 10 demonstrates the allocation view of our system. We
could see right away the resources that are involved in the system
and how they are allocated to the running processes. For example,
we can see that the global positioning system (GPS) is allocated
to the user location processing; the BAPPU device is allocated to
the sound monitoring processing, the camera with retinal
recognition and the infrared detector are all allocated to the safety

Task Manager Agent Context Manager
Agent

History Knowledge-base
Agent

UMMCS

Depends on

D
epends on

Depends on

Dep
en

ds o
n

D
epend s o n

Depends on

D
ep

en
ds

 o
n

Co
m

m
un

ic
at

es
 w

ith

Consumes user
profile, user needs

Consumes
machine

knowledge ,
training

User task
process

User
application

process

User profile
transaction

Consumes
user profile

Consumes
application

data

Depend s on

Overall
context

interpreter

Media devices
configuration

process

Produces media /
modality selection

Sound
monitoring

process

Safety factor
detection
process

User location
detection

Consumes

context1
Consumes context3

Consum
es

context2

Runs
concurrently

with

Runs
concurrently

with

Machine
Learning
process

Device
context

suitability
process

Consumes
devices
context

suitability
scores

Com
m

un icates w
ith

Task Manager Agent Context Manager
Agent

History Knowledge-base
Agent

UMMCS

Submodule of

S
u

b
m

o
d

u
le

 o
f

Submodule of

User
Profile
Agent

User
Task

Agent

User
Application

Agent

Image/
Pattern

Recognition
Agent

User
Location

Agent

Monitoring
Agent

Media
Devices
Configu-

ration
Agent

Device-
Context

Suitability
Agent

Machine
Learning

Agent

Training
Set

Agent

S
ub

m
od

ul
e

of

S
u

b
m

o
d

u
le

 o
f

S
ubm

odule of Submodule o
f

Subm
odule of

S
u

b
m

o
d

u
le

 o
fSub

m
od

ul
e
of

Subm
odule of

S
u

b
m

o
d

u
le

 o
f

Su
bm

od
ul

e
of

 76

factor detection processing, and the media devices configuration
processing would migrate to the selected media and modalities
because of their dynamic (rather than static) allocation
relationship.

Figure 10. First level allocation view of the UMMCS.

5. ARCHITECTURAL EVALUATION

The Architectural Tradeoff Analysis Method (ATAM) [22] is the
technique we adapt in evaluating our proposed architecture. In
concept, our system architecture is still in the development stage
hence this evaluation is apt only for this level of development.
ATAM is used to analyze system architecture. Although ATAM
is used by different stakeholders with business driver motivations
that we do not possess since our work is purely academic in
nature, still ATAM is a good method to evaluate system
architecture with respect to the prospect of achieving desired
quality attributes. In software architecture, various styles or
patterns exist, among them are: (i) pipes and filters, (ii) data
abstraction/object-oriented, (iii) event-based, implicit invocation,
(iv) layered, and (v) repositories. The choice of architecture style
directly affects the quality attribute to achieve. For example, a
layered pattern brings portability but at the expense of
performance. A repository pattern is ideal on the producer-
consumer type of system.
In general, the ATAM analysis involves the following steps: (1)
Presentation of ATAM, (2) Presentation of architecture, (3)
Identification of architectural approaches, (4) Generation of
quality attribute utility tree, (5) Analysis of architectural
approaches, (6) Brainstorming and prioritizing scenarios, and (7)
Presentation of results. Figure 11 illustrates the layered
architecture of the UMMCS. The layered architecture offers the
perception of stimuli that could affect the achievement of desired
system qualities.

On the hardware side, performance is again an issue. The devices
and the sensors used to detect user context must be reliable. The
fact that 1 context sample is generated in every 1 minute means
that there is no room for devices and sensors to produce the
needed data in a slower manner. The result of the ATAM analysis
(i.e. utility tree) is shown in tabular form in Table 3. The quality
attribute and the scenarios affecting the quality are described. The
priority of importance in addressing these scenarios are denoted
as H (if it is of high importance), M (for medium importance),
and L (for low importance). For now, our priority is focused on
the achievement of availability, performance, modifiability and
scalability attributes. All other issues are of low priority.

Figure 11. Layered view of the UMMCS.

Table 3. The tabular form of the utility tree for the UMMCS.

6. CONCLUSION

In this paper, we have demonstrated in part the requirements
analysis, the architectural design and evaluation of a ubiquitous

UMMCS

Allocated to

A
llocated to

Allocated to

Allo
ca

ted
 to

A
llocated to

Allocated to
Allo

ca
ted

 to

Allo
ca

ted t
o

User task
processing

User
application

process

User profile
transaction

Allocated to

Overall
context

processing

Media devices
configuration
processing

Selected media /
modalities

assigned to

Sound
monitoring
processing

Safety
factor

detection
processing

User
location

processing

A
ss

ig
ne

d
to Assigned to

Assigned to

ML
Processing

Device
context

suitability
processing

A
llocated t o

Task Management Context
Management

History and Knowledge-
base Management

User task
database

QoS profile
supplier
profile

User profile

M
ig

ra
te

 to

M
ig

ra
te

 to

M
ig

ra
te

 to

GPS BAPPU
device

Camera with
retinal

recognition ,
infrared
detecter

A
llo

ca
te

d
to

A
llo

ca
te

d
to

A
llo

ca
te

d
to

Selected
media/

modalities

M
ig rate to

Training Set
Processing

A
llo

ca
te

d
 to

A priori
training set

records

List of
replacements

Device-
context

suitability
records

M
igrate to

M
igrate to

A
llo

ca
te

d
to

Context Manager Agent

User Location
Detection

Environment
Noise Detection

Risk Factor
Detection

User Special
Needs

Missing/
Defective

Media/
Modalities

Functional
Media/

Modalities

ML
Trainings

User
Interface for
ML Trainings

Knowledge Database

User Profile and Task

CORBA

 77

[8] D. Garlan and D. Perry, "Software Architecture: Practice,
Potential, and Pitfalls," Sorrento, Italy, 1994.

MM computing system. This system detects the user context and
user needs in the user profile, and yields the media and modalities
that are appropriate for the given user situation. The user context
is based on user’s location, the noise level in the workplace, and
the presence or absence of other people in the workplace. It is also
based on the computing device the user is utilizing. The special
need, if applicable, is whether or not a user is handicapped. And if
so, which handicap then. The requirements analysis is presented
from the system’s functional needs’ perspective. The steps in
software architecture design are presented based on the system’s
quality attribute perspective. The quality attributes and the stimuli
that could challenge the system from achieving the desired system
qualities are shown, although not presented entirely due to space
restrictions. The quality attribute scenarios (QAS) are presented in
general, and our system is considered as a test case. Our ongoing
research includes system or system’s component self-management
amidst the growing complexity of information technology.
Further works on autonomic computing qualities (i.e. self-healing,
self protection, self-configuration, and self-optimization) could be
injected into our system that is still in its development stage. We
did subject our system to ATAM architectural evaluation, and
true enough, as system architects, we could imagine and consider
just too many scenarios, big or small, urgent or not, that could
affect the system’s capacity of achieving basic quality attributes.
Our future works include the dynamic architecture and the system
self-adaptation based on varying conditions such as resource
restrictions (i.e. limited bandwidth) and varying user priorities.

[9] P. Clements, R. Kazman, and M. Klein, "Evaluating
Software Architecture," 2002.

[10] F. Bachmann, L. Bass, M. Klein, and C. Shelton, "Designing
Software Architectures to Achieve Quality Attribute
Requirements," IEE Proceedings: Software, vol. 152, pp.
153-165, 2005.

[11] J. Bosch and L. Lundberg, "Software Architecture -
Engineering Quality Attributes," Journal of Systems and
Software, vol. 66, pp. 183-186, 2003.

[12] C. Stoermer, L. O'Brien, and C. Verhoef, "Moving Towards
Quality Attribute Driven Software Architecture
Reconstruction," Victoria, BC, Canada, 2003.

[13] R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan,
"Architectural Styles, Design Patterns, and Objects," IEEE
Software, vol. 14, pp. 43-52, 1997.

[14]T. Mitchell, "Machine Learning," McGraw-Hill, 1997.
[15] O. Buffet, A. Dutech, and F. Charpillet, "Incremental

Reinforcement Learning for Designing Multi-agent
Systems," Montreal, Que., Canada, 2001.

[16] A. Caglayan, M. Snorrason, J. Jacoby, J. Mazzu, R. Jones,
and C. River, "Learn Sesame – A Learning Agent Engine,"
presented at Applied Artificial Intelligence, 1997.

[17] S.-W. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B.
Spitznagel, and P. Steenkiste, "Using Architectural Style as
a Basis for System Self-Repair," presented at IFIP 17th World
Computer Congress, 3rd Working IEEE/IFIP Conference on
Software Architecture (WICSA3), Montreal, Quebec,
Canada, 2002.

7. ACKNOWLEDGMENTS
This work has been made possible by the funding awarded by the
Natural Sciences and Engineering Research Council of Canada
(NSERC)

[18] M. D. Hina, A. Ramdane-Cherif, and C. Tadj, "A Ubiquitous
Context-sensitive Multimodal Multimedia Computing and
Its Machine-Learning Assisted Reconfiguration at the
Architectural Level," presented at Workshop on Multimedia
Information Processing and Retrieval, Proceedings of the
Seventh IEEE International Symposium on Multimedia,
California, USA, 2005.

8. REFERENCES
[1] H. Djenidi, S. Benarif, A. Ramdane-Cherif, C. Tadj, and N.

Levy, "Generic Multimedia Multimodal Agents Paradigms
and their Dynamic Reconfiguration at the Architectural
Level," in Eurasip Journal on Applied Signal Processing,
Hindawi Publishing Corp., USA, pp. 1688-1707, 2004

[19] M. D. Hina, C. Tadj, and A. Ramdane-Cherif, "Design of an
Incremental Learning Component of a Ubiquitous
Multimodal Multimedia Computing System," submitted at
WiMob 2006, 2nd IEEE International Conference on
Wireless and Mobile Computing, Networking and
Communications, Montreal, Quebec, Canada, 2006.

[2] M. D. Hina, A. Ramdane-Cherif, and C. Tadj, "A Context-
Sensitive Incremental Learning Paradigm of a Ubiquitous
Multimodal Multimedia Computing System," presented at
WiMob 2005, IEEE International Conference on Wireless
and Mobile Computing, Networking and Communications,
Montreal, Canada, 2005.

[20] F. Bachmann and L. Bass, "Introduction to the Attribute
Driven Design Method," presented at Proceedings - IEEE
Computer Society International Conference on Software
Engineering, Toronto, Ontario, Canada, 2001.

[3] M. Satyanarayanan, "Pervasive Computing: Vision and
Challenges," IEEE Personal Communications, vol. 8, pp. 10-
17, 2001. [21] M. D. Hina, C. Tadj, and T. Ramdane-Cherif, "Quality

Attributes and Self-Management Considerations in
Designing a Pervasive Multimodal Multimedia Computing
System," presented at GPC 2006, The First International
Conference on Grid and Pervasive Computing, Tunghai
University, Taichung, Taiwan, 2006.

[4] M. Satyanarayanan, "Mobile Information Access," IEEE
Personal Communications, vol. 3, pp. 26-33, 1996.

[5] M. Satyanarayanan, "The Evolution of Coda," ACM
Transactions on Computer Systems, vol. 20, pp. 85-124,
2002.

[6] K. Pahlavan and P. Krishnamurthy, "Principles of Wireless
Networks," 2002.

[22] R. Kazman, M. Klein, and P. Clements, "ATAM: Method for
Architecture Evaluation," CMU/SEI 2000.

[7] L. Bass, P. Clements, and R. Kazman, "Software
Architecture in Practice," 2nd ed, 2003.

 78

 79

Open Source Software in Software Engineering Education:
No Free Lunch

Pankaj Kamthan
Department of Computer Science and

Software Engineering
Concordia University, Montreal,

Quebec, Canada H3G 1M8
 1-(514)-848-2424-3000

kamthan@cse.concordia.ca

ABSTRACT
The Open Source Software (OSS) movement has introduced a
new way of developing and disseminating software. In this paper,
we examine some of the fundamental practices in traditional
software engineering education (SEE) from an OSS perspective.
A simple framework as a first step for introducing OSS in SEE is
presented. The opportunities and obstacles of OSS in SEE are
identified and analyzed with the help of examples.

Categories and Subject Descriptors
D.2 [Software Engineering]; K.3.2 [Computer and Information
Science Education]

General Terms
Management, Documentation, Economics, Experimentation,
Human Factors.

Keywords
Open Source, Software Process, Software Engineering, Education,
Quality.

1. INTRODUCTION AND BACKGROUND
The steady rise of Open Source Software (OSS) [14] over the last
few decades has made a noticeable impact on many sectors of
society where software has a role to play. As reflected from the
frequency of media articles, traffic on mailing lists, and growing
research literature, OSS has garnered much support in the
software community. Indeed, from the early days of GNU
software, to Linux and its utilities, to more recent the Apache
Software Project, to name a few, OSS has changed the way
software is developed and used.
The concept of open source can mean different things in different
contexts [4]. For the purposes of this paper, we will use “open
source” as a single encompassing term for “free/freely available”
or “libre/liberated” software whose source is available without
cost to the user, imposes minimal non-restrictive licensing
conditions, and is itself based upon non-proprietary technologies.
Software that does not fall into this category is termed as non-
OSS. Commercial software is one class of non-OSS.
As OSS becomes prominent, the issue of its outreach in an
educational context arises. This paper takes the position that
students studying software development should be exposed to this
rapidly growing area. In fact, the use of OSS in computer science

education has been emphasized in recent years [1,7,8,12]. It has
also been suggested [2] that developing OSS could also help
students in their future career paths.
However, the current studies of OSS-based education are limited
in one or more of the following ways: the discussion is often
confined to the case study of a specific OSS, coverage tends to be
one-sided with general conclusions, do not highlight the problems
associated with introducing OSS, do not address SEE exclusively,
or ignore aspects of software engineering that OSS do not
address. One of the purposes of this paper is to address these
concerns.
The rest of the paper is organized as follows. In Section 2,
selected SEE practices are addressed in the light of OSS. Section
3 presents an elementary framework for introducing OSS in SEE.
Finally, in Section 4, we conclude with challenges and directions
for future research.

2. SEE AND OSS: SIMILARITIES AND
DIFFERENCES
Before embarking on an OSS-based development, we need to
inspect how it manifests itself in a traditional SEE setting. This
section looks at six broadly classified aspects, namely that of
management, process, modeling/specification, standards,
documentation, and quality, that are common in most SEE
contexts and examines how they are realized (or not) in an OSS
environment.

2.1 Management
We shall limit our discussion to measuring success and team,
time, and configuration management.

The goals of developing software in educational and OOS
contexts are different. In SEE, the software product is a means to
the end, not an end in itself. It has been reported [2] that OSS
often lacks precise specification of goals and as a result fails to
define “success”. The reason for abandoning an OSS project are
often not given or made public. In SEE, there is a price for not
performing up to the expectations or working to your full
potential, and is exhibited in a grading differential.

There are differences between the social structure of a team of
students in an SEE environment versus participants in the OSS
development. In general, course project teams in SEE are
collocated while those in OSS are distributed. There is also a
notable difference with respect to social bonding. The students
most likely belong to the same institution, may take multiple

 80

courses together. The students also may be related on a personal
level (roommates, siblings, friends), while that is not the norm in
an OSS development where the participants are loosely related.
There is no inherently hierarchical team structure in OSS. Since
participation does not require qualification and is voluntary,
anybody can participate, and at times, anybody does. It is well-
known in software project management studies that it is not the
number that matters. There is usually a core group that contributes
the most with a sporadic participation by others [9]. On the other
hand, assuming responsibility and accountability are at the heart
of SEE. Students are (or learn to be) accountable to others in their
team as well to the teacher.

In lieu of mimicking real-world software projects as well as due
to natural limitations of schedules at educational institutions, there
are inevitable time constraints associated with course projects.
However, there is little sense of urgency in OSS projects.

The distributed nature of contribution by anybody at any time as
well as the desire of the developers to be able to disseminate “up-
to-the minute” code has led to a usually strong support for
configuration management (version control, bug tracking, or build
management) in OSS development. Posting nightly builds for
tryout is quite common in an OSS environment. However, in
author’s experience with SEE, configuration management is not
as pervasive as OSS and is usually limited to version control and
backups.

2.2 Process
In SEE, students are normally introduced to both
rigid/prescriptive and flexible/agile process models. OSS
development process, known as the “Bazaar model” [13], is not
subsumed by any of these although it is much closer to the latter
than it is to the former.

As an example, many of the practices of Extreme Programming
(XP) are applicable to OSS [11]. However, two of the key
practices of XP, namely that of Onsite Customer and Pair
Programming, do not scale well to OSS.

Unlike the case of traditional software process environments
where organizations make the use of Capability Maturity Model
(CMM), there is little systematic effort towards maturity of OSS
process.

2.3 Modeling/Specification
Modeling, particularly during early phases of software
development, is playing an increasingly important role in
activities and deliverables in SEE. It is often emphasized that
early modeling is crucial from the point of view of understanding
the problem and solution domains in an implementation neutral
manner, and control and prevention of problems that can
propagate into later stages.

The Unified Modeling Language (UML) has emerged as a
standard language for modeling the structure and behavior of
object-oriented systems, and its use in the last few years in SEE
has increased dramatically. However, there is little evidence of
use of UML, and in general of any form of systematic modeling,
in OSS.

Formal Specifications are also integral to many courses in SEE
where the safety requirements or design of a critical system need

to be precisely (mathematically) expressed. However, once again,
there is little evidence to support the use of mathematics in OSS
problem or solution domains for system analysis or synthesis,
respectively. This evidently limits the use of OSS, even in part, in
safety-critical software.

2.4 Standards
There are a variety of reasons for introducing and adhering to
standards in SEE. Standards provide a common ground for a
team, streamline efforts, and when applied well are known to
contribute towards quality improvement [14].The author is a
strong proponent of the use of standards throughout SEE and has
made mandatory use of IEEE and/or ISO/IEC standards in
process documents and strongly encouraged standardized (ANSI,
ECMA) definitions of programming languages and corresponding
compilers/interpreters.

The OSS approach serves as a platform for trying out new
technologies and developing “proof-of-concept” implementations,
and, in doing so, the use of standards is limited to data formats
such as the HyperText Markup Language (HTML) or the
Extensible Markup Language (XML).

2.5 Documentation
The role of documentation is usually accentuated in SEE. The
courses related to technical communication and programming
methodology early in the curriculum form the basis of internal
documentation of software developed in later courses. In some
cases, creating external documentation (user manual) may also be
required.

In contrast, it has been the author’s experience that OSS is in
general weak with respect to documentation. The documentation
at times may not be complete or may only be sketchy. The OSS
style of writing also at times tends to be ‘wordy’, and ‘casual’
rather than succinct and technically-inclined to the issue at hand.
At times, help or tutorial documents are not updated to
synchronize with the latest code releases.

2.6 Quality
In SEE, there is much emphasis on quality and its relation to
measurement in all aspects of software (project, process, product,
and occasionally even people).

There are many OSS that exhibit high quality. However, the
approach to quality assurance and assessment is not systematic
and therefore seemingly not repeatable. In OSS, peer reviews are
used as a technique for an informal evaluation whereas formal
inspections are apparently non-existent. Comprehensive
collections of test cases, test suites or test harnesses are rare, and
broad testing is even rarer. More importantly, participation is
voluntary and monitoring is almost non-existent. The linear
relation of number of bugs found to improvement of quality
proposed by the OSS development process [13] is overly
simplistic, and has indeed been termed as a “fallacy” from a
software engineering perspective [6]. The issue of OSS quality in
general, and concerns of security and usability in particular, has
been addressed in [9,10].

Having analyzed the parity/disparity between OSS and traditional
SEE, we now turn our attention to realizing OSS in SEE.

 81

3. INTRODUCING OSS IN SEE
The OSS ecosystem can be applied in a SEE context in a number
of different (but not necessarily mutually exclusive) ways: OSS
for pedagogy and for learning, as a CASE tool, as a sub-system,
for reuse, and adoption of the OSS process.
A project without clear goals will not achieve its goals clearly [5].
Therefore, the aforementioned ways need to be aligned with
teaching and learning goals. Furthermore, since software
engineering is a practical discipline, all the aims and activities
from their initiation to their completion should be feasible.
Finally, use and/or development of OSS must be legally
acceptable in the place where SEE is carried out. Table 1
illustrates the architecture of the framework.

Table 1. A high-level view of the OSS/SEE framework

OSS for Pedagogy
Theory

OSS for Learning

OSS as CASE Tool

OSS as Sub-System

OSS for Reuse Application

OSS Process
Adoption

Teaching
and

Learning
Goals

Feasibilit
y

Legality

The precise articulation of the teaching and learning goals, of the
criteria and techniques to be adopted for carrying out a feasibility
study, or of legal issues, is beyond the scope of this paper. We
simply state that in an educational environment, both the teachers
and students are bound by time constraints. Moreover,
educational institutions and students are increasingly facing
budgetary constraints. Any efforts of integrating OSS in SEE
could be potentially threatened if either of these is severely
violated. It would also undermine one of the founding
philosophies of the OSS, that is, of cost associated with software.
Any feasibility analysis ultimately requires making decisions to
prioritize among the given options. To help achieve that,
Analytical Hierarchy Process (AHP) and Quality Function
Deployment (QFD) are two commonly used project management
techniques. Any feasibility analysis, however, should also be in
agreement with the institutional emphasis on decision support for
software engineering in general.
Any SEE must occur within the legal framework of the country
where it is carried out. We note that laws can be locality-
dependent and thereby present obstacles to use of OSS in SEE.
For example, the freedom of deploying OSS in Canada does not
currently carry over to Germany. OSS related policies may also
vary across provinces and educational institutions.
We now discuss the different uses of OSS in SEE.

3.1 OSS for Pedagogy
This approach to OSS in SEE advocates use of OSS for teaching
purposes in a classroom. Teachers could also include OSS as part

of the course content, something that is unique to OSS
environment and not readily possible in a non-OSS context. The
availability of source code in OSS provides a unique opportunity
for the teacher to experiment. Source code internals of software
(that is usually larger in scale than those accompanying the
commonly used textbooks) can be shown and its quality can be
debated. Teachers could, for example, point out both successful
and failed OSS efforts, and reasons for being so.
OSS could also be used by students in making classroom
demonstrations and presentations. For example, the use of slides
in Extensible HTML (XHTML), projection media presentation
semantics supplied by a style sheet in Cascading Style Sheets
(CSS), and used in conjunction with the Amaya user agent
provides a simple, non-binary, cost-effective, interoperable, and
enduring alternative to Microsoft PowerPoint.

3.2 OSS for Learning
This approach to OSS in SEE advocates use of OSS for self-
learning purposes outside classroom (say, at home). The ascent of
affordable personal computers, ubiquitous and high-speed Internet
connectivity, and the use of the Web as an information base is
having a major impact on the way students study and learn at
home. In contrast with non-OSS, the availability of OSS source
code provides a unique opportunity for the student to experiment.
Thus OSS becomes a platform for skills development. One of the
constructivist theories of learning [16] has emphasized learning
by doing.
There are, however, certain hindrances when this is put into
practice. As pointed out in Sections 2.5 and 2.6, lack of sufficient
documentation or quality could also pose obstacles to novice.
Technical support mainly for special-purpose OSS is usually
limited to participation in an electronic forum with no guarantees
of a timely response, if at all.

3.3 OSS as CASE Tool
This approach to OSS in SEE advocates use of OSS for
supporting development activities (that is, as CASE tools). We
need software to develop software, and OSS utilities could prove
useful in that regard. Examples are Apache Maven for project
management, Yahoo! Groups for fostering team-wide
communication, ArgoUML as a UML modeler, GNU Emacs as a
universal text-based editor or alternatively IBM Eclipse as an
multi-purpose authoring environment, CCDoc for C++
documentation, Bugzilla for issue tracking, Apache Ant for
building, Lint for code styling, JUnit for unit testing, and
Subversion for placing deliverables under version control, to
name a few.
However, OSS does not always scale well in comparison to their
non-OSS counterparts. For example, in spite of their relatively
high cost, IBM Rational Rose or Borland Together ControlCenter
still remain the UML modelers of choice. In some cases, unless
required otherwise, students may also find “all-in-one” multi-
utility packaged commercial integrated development
environments (IDEs) more convenient to use for programming
purposes.

3.4 OSS as Sub-System
This approach to OSS in SEE advocates use of a standalone OSS
as auxiliary software that supports the system under development

 82

for the course project. In that regard, OSS support has in general
been exemplary.
For example, a project involving a Web Application could use
Amaya as the user agent on the client-side and Jigsaw or Apache
Web Server along with MySQL/PHP and (one of the many
available) XML parser on the server-side.
This also highlights one of the major points of departure between
OSS and non-OSS (which would in general not allow copy and
redistribution outside the realm of the customer, and even that
with strict restrictions).

3.5 OSS for Reuse
This approach to OSS in SEE advocates reuse portions of OSS
code in assignments or as part of the system under development
as for the course project. Examples include OOS libraries or
frameworks. It ameliorates the tedium of writing the entire code
from scratch, particularly that for routine primitive functions such
as finding the LU decomposition of a matrix or drawing an
elliptic hyperboloid.
However, issues of the students treating reused code as a “black
box” without really understanding the internals, degree to which
reuse should be allowed, and that of appropriate
acknowledgement remain a challenge. We also note here that
according to the COCOMO II cost estimation model, reuse comes
at a price of learning and adapting to new situations.
The following example illustrates some evaluation issues related
to reuse. Suppose program A (reuse) submitted by one student
and program B (no reuse) submitted by another student as part of
their work are being evaluated for an external quality
characteristic, say performance, by the teacher. Now, should A be
graded higher than B if the teacher determines that it is the reused
code that is making the difference? Should the “art” of finding
and reusing OSS matter? These questions need to be addressed
and answered to make OSS reuse viable.

3.6 OSS Process Adoption
This approach to OSS in SEE advocates the adoption of OSS
practices and develop software as part of a course project. The
resulting software will then itself be an OSS and whose
development will be open to public. As an example, SourceForge
could provide a medium for development, collaboration, and
distribution.
However, this may be the most challenging of all the dimensions.
The Bazaar model requires a different mindset from traditional
approaches and may need to be “tailored” for an educational use.
For example, instilling the sense of team work in physical
proximity, and experiencing the issues that go with it are an
important part of learning. Reports of a successful application are
also rare [1].
Also, fairness in evaluation is still an issue. For example, should
(un)solicited feedback from those not registered in the course be
allowed? If so, how should a feedback imbalance across teams be
dealt with? Again, these questions need to be addressed and
satisfactorily answered prior to any OSS initiative.

4. CONCLUSION AND FUTURE WORK
Today, OSS has reached the level of maturity that it could be
embraced as well as criticized, but not ignored. If the predictions
of software business models [2,3] are correct, OSS and non-OSS

will continue to co-exist. Both OSS and non-OSS have their own
share of strengths and weaknesses, are most likely to co-exist, and
any approach to SEE should take them into consideration.

If one of the goals of SEE is to prepare students for their future
careers, we must look at the OSS objectively. For that the SEE
culture in educational institutions will need to evolve.

OSS has much to offer to SEE. However, the transition from one
to the other is hardly straightforward. Any adoption of OSS in
SEE needs to be aware of the philosophical differences between
the two and prepare accordingly. The adoption of OSS in SEE
need not be seen with skepticism but rather with cautious
optimism.

A few directions of research emanate from this work. Among the
possible domains that OSS addresses, it would be of interest to
examine the ones more congruent to SEE. Among the open source
possibilities, this paper focuses mostly on OSS; a natural
extension of this work would be to look into the use of “open
content” (excluding source code) in SEE. The aim of open content
is to “facilitate the prolific creation of freely available, high-
quality, well-maintained content” (not including software). MIT
OpenCourseWare and Rice Connexions are two commonly cited
examples of institution-initiated efforts of making course content
open to public-at-large. The significance of open content for
education in general has been highlighted in [1]. The continually
increasing price of textbooks, none of which may be suitable as-is
to a given course, is one motivation open content in SEE. We plan
to investigate these in future work.

5. ACKNOWLEDGMENTS
This work has benefited from discussions with software
engineering students at Concordia University, Canada. I would
especially like to thank Hsueh-Ieng Pai for careful reading,
comments, and feedback.

6. REFERENCES
[1] Attwell, G. What is the Significance of Open Source

Software for the Education and Training Community? The
First International Conference on Open Source Systems
(OSS 2005), Genova, Italy, July 11-15, 2005.

[2] Cusumano, M. A. Reflections on Free and Open Software.
Communications of the ACM, 47, 10 (2004), 25-27.

[3] Feller, J., Fitzgerald, B., Hissam, S. A., and Lakhani, K. R.
Perspectives on Free and Open Source Software. MIT Press
(2005).

[4] Gacek, C. and Arief, B. The Many Meanings of Open
Source. IEEE Software, 21, 1, IEEE Press (2004), 34-40.

[5] Gilb, T. Principles of Software Engineering Management.
Addison-Wesley (1988).

[6] Glass, R.L. Facts and Fallacies of Software Engineering.
Addison-Wesley (2003).

[7] González-Barahona, J. M., Heras-Quirós, P. D. L., Centeno-
González, J., Matellán-Olivera, and Ballesteros-Cámara, F.
Libre Software for Computer Science Classes. IEEE
Software, 17, 3 (2000), 76-79.

 83

[8] Liu, C. Adopting Open-Source Software Engineering in
Computer Science Education. The Third Workshop on Open
Source Software Engineering, Portland, USA, May 3, 2003.

[9] Michlmayr, M., Hunt, F., and Probert, D. R. Quality
Practices and Problems in Free Software Projects. The First
International Conference on Open Source Systems (OSS
2005), Genova, Italy, July 11-15, 2005.

[10] Nichols, D. M. and Twidale, M. B. The Usability of Open
Source Software. First Monday, 8, 1 (2003).

[11] Nishinaka, Y. Open Source Software Developments in XP
Style. The First Workshop on Open Source Software
Engineering, Toronto, Canada, May 15, 2001.

[12] Port, D. and Kaiser, G. Introducing a "Street Fair" Open
Source Practice within Project Based Software Engineering

Courses. The First Workshop on Open Source Software
Engineering, Toronto, Canada, May 15, 2001.

[13] Raymond, E. S. The Cathedral & the Bazaar. O'Reilly &
Associates (1999).

[14] Schneidewind, N. F. and Fenton, N.E. Do Standards Improve
Product Quality? IEEE Software, 13, 1, IEEE Press (1996),
22-24.

[15] Vixie, P. Software Engineering. In: Open Sources: Voices
from the Open Source Revolution. C. DiBona, S. Ockman,
M. Stone (Editors). O'Reilly & Associates (1999).

[16] Vygotsky, L. S. Mind in Society: The Development of Higher
Psychological Processes. M. Cole, V. John-Steiner, S.
Scribner, E. Souberman (Editors). Harvard University Press
(1978).

 84

 85

How Valid is the Notion of “Information Society”?
Mohamed Ben Moussa

Department of Communication Studies
Concordia University, Montreal, Quebec

m_benmoussa@alcor.concordia.ca

ABSTRACT
The notion of “Information Society” entails that new
Information and Computer Technologies and Software have
radically transformed the industrialized countries, leading in the
process to new political, social and cultural structures. Yet, the
notion of the Information Society reflects a futuristic view that
is based on a deterministic perception of technology and its
impact on society.

General Terms
Global, impact, production, democracy, corporations, new
economy, power.

Keywords
Information Society, knowledge, Computer hardware and
software, ICT, Network, Informational economy.

1. INTRODUCTION
The impact of technology in general and software in particular
are not limited to areas of industry and business. They have far
reaching effects on all aspects of life, including social, political
and cultural dimensions. Various concepts and theories have
been used to understand, analyze and record this impact, the
most important of which is the notion of ‘information society’.
In fact, there is a unanimous consent that information and
communication technologies (ICTs) and software have become
pervasive in all aspects of life; but whether this pervasiveness
has radically transformed society and has led to the emergence
of a new one remains a problematic question that still needs to
be verified.

The information society is one where information technologies
and software permeate all levels and sectors of society. It is also
one which relies in its economic activities on knowledge and
information as principal resources and products. And according
to the advocates of this notion, the information society has
already become a reality and replaced older forms of society.

However, its widespread attractiveness notwithstanding, the
idea of the information society is far from convincing or
conclusive. It is undeniable that information technologies and
software are having a significant bearing on modern society and
have even contributed effectively to transforming many of its
aspects. This view, however, reflects a deterministic view that
ignores that technology has a potential that can be an instrument
of progress and conservatism, freedom and control, social
inclusion as well as exclusion.

This paper will argue that the idea of the information society is
not a valid proposition. It will begin by highlighting the main
premises upon which this concept is built, drawing mainly upon
the ideas of one of the most prominent theorists of the
‘information society’, namely Manuel Castells. This choice
comes from the fact that Castells’ is the most comprehensive
theory of the information society as it covers many aspects from
economy to culture and politics.

2. THE POLITICAL ECONOMY OF THE
INFORMATION SOCIETY:
At the economic level, Castells maintains that the information
society has developed due to the transformation of the industrial
system of production and the emergence of the ‘informational
capitalism’. He (1996:17) points out to a number of features
that characterize this new economy, including knowledge,
which acts ‘as the main source of productivity’, and a high level
of globalisation and networking, since it is an economy that
works as a unit in real time on a planetary scale (ibid:101).
Moreover, the informational economy knows a decline in
manufacturing employment due to the ‘rapid rise of managerial,
professional and technical jobs’ (ibid: 244-5).

Besides, Castells advances that power relationships between
capitalist classes and ‘knowledge workers’ have radically
changed. In this regard, he (1996: 104) asserts that ‘ICTs have
reduced the effectiveness of global corporations and
dramatically empowered those people and organizations who
are entrepreneurial and effective in terms of networking’.
Because knowledge and information are the essential factors in
production, ‘the new producers of informational capitalism are
[…] knowledge generators and information processors’
(Castells, 1998: 345).

As to the political level, Castells claims that the spread of the
global information networks announces the demise of the nation
state and the rise of new forms of politics. ‘Bypassed by global
networks of wealth, power, and information, the modern nation
state has lost much of its sovereignty’ (Castells: 1997, 354).
Likewise, political parties and the whole civil society have been
severely weakened since they ‘find themselves deprived of
actual meaning in the new social context’ (ibid: 355). In fact,
Castells believes that the rise of the information society has
brought about a new form of politics based on ICTs that is
providing marginal groups and international movements with
effective means to further their causes (Castells, 1998: 68-135),
and is leading to a more participatory form of democracy
(2000: 391-392).

3. LIMITATIONS OF ‘INFORMATION
ECONOMY’ MODEL:
There is no evidence that industrial economies have become
more oriented towards information-based sectors at the expanse
of the manufacturing sector. Stehr (2004: 216) maintains that
the ‘share of the manufacturing sector between 1978 and 1990
has declined somewhat in some of the countries, remained
stable in others and increased in the case of the Japanese
economy’. This testifies to the fact that the manufacturing
sector has either largely conserved its position in the economy
or has increased in importance. Besides, the fact that the world
economy is operating as a network is not a new phenomenon.
Garnham (2004: 173) rightly affirms that communication
networks have underpinned the capitalist mode of production
with extraordinary speed and reach since the 19th century. The
new networks are, therefore, an extension of that system.

 86

Similarly, there is no clear evidence that there is a radical shift
towards information or knowledge-based labour. Many of the
criteria on the basis of which information workers are singled
out by the information theorists are questionable. Though
Castells uses a variety of criteria to single out information
workers, he does not specify what is the sufficient knowledge in
ICTs that distinguishes knowledge workers. Webster (2002:
115) claims that ‘the journalist on a daily newspaper is to
Castells an informational worker in much the same way as is
the surgeon in a hospital’. The question of criteria takes a
problematic proportion for Stehr (2004: 218) who asserts that
‘what is needed even more urgently, independent of
conventional occupational labels, is a valid examination of
actual work tasks carried out by employees ’.

Equally important, the advance of the new ICTs has not
undermined the grip of multinationals on economy. Indeed, the
current drift towards mergers and takeovers among
multinational corporations that control IT industries reveals that
these companies are far from losing control on the market;
rather, they are consolidating their grip on it. Ramonet (2003)
argues that the development of new ICTs has opened the way
for giant corporations to control three distinguished fields,
namely ‘mass culture with its commercial logic[..];
communications, as advertising, marketing and propaganda;
and news and information, represented by agencies, radio and
television news’. These technologies have, thus, allowed giant
corporations to expand their business, to extend their control to
different fields on a global scale and to break barriers between
different domains as ‘distinctions between office, home, work
and leisure’ have become insignificant (Kumar, 2004: 115).
Consequently, what is called ‘information society’ is, in fact,
merely an intensification and continuation of the capitalist
system that has been developing over the whole twentieth
century.

On the other hand, there is no indication that power relations
between capitalist classes and ‘knowledge labour’ have
changed. Intellectual property rights that govern most scientific
research in the world are controlled basically by large
corporations and firms. According to May (2002: 73),
capitalists, rather than knowledge labour, control the means of
production by patenting processes and technical procedures
needed for knowledge work. Queau (2000) claims that firms
and interest groups have been lobbying successfully to tighten
intellectual property rights ‘by using the ‘multimedia
revolution’ as an argument’.

Besides, while Castells (1998: 346) celebrates the emergence of
a new class of self-employed knowledge producers in full
control of their work process, this mode of employment is, in
reality, imposed in many cases by the corporations to rise
benefits. As an example, Microsoft employs thousands of part-
time employees and to avoid paying them the benefits to which
full-time employees are entitled, it adopted a policy stipulating
that ‘those who have worked for the company for a year are
required to take a thirty-one day break before being rehired as
temps’ (CCMS, 2003). In this regard, Garnham (2004:178)
argues that ‘the shift from energy to brainpower does not
necessarily change the subordination of labour to capital’.

4. LIMITATIONS OF THE ELECTRONIC-
DEMOCRACY MODEL:
In the political sphere, though the development of the new
technologies challenges the power of the nation state, ICTs
have been used to strengthen the hold of the former on society.
Upon their invention, older forms of technology, such as the
telegraph, the telephone and the radio, appeared to threaten the

ability of states to control their territories and people. Yet,
nation states managed to use them to further strengthen their
power. Likewise, the new technologies provide them with
unlimited means of surveillance and control over their citizens.
Robins and Webster (2004: 72) maintain that ‘technologies
have increasingly been deployed in the twentieth century to
render the exercise of power more efficient and automatic’. It
is, therefore, erroneous to state that the rise of the information
society is leading to the demise of the state.

Besides, it is highly improbable that the new ICTs and ‘the
network society’ are causing the decline of the traditional
political system. Though television has changed the way
political campaigns and politics, in general, are communicated,
it has not led to the loosening of the elites’ grip over power.
Instead, it has given them a powerful tool of propaganda and
manipulation of the masses. As an illustration, in the United
States, ‘78 percent of political web pages fell within the
mainstream of American political culture’, while ‘the political
users of the net in the United States are more inclined than the
average citizens to vote for the major political parties’ (Curran
& Seaton, 2003: 265).

Equally important, the ability of the new ICTs to create a real
participatory democracy is too optimistic and unrealistic.
Contrary to Castells’ claim about the advance of new
democratic projects such as the Digital city (2000: 391-2),
research studies on the role of ICT in promoting a participatory
democracy have established that this role is very limited. An
experiment of a political debate conducted online over one
month and comprising different people revealed that most
discussions were dominated by a limited number of people
(Papacharissi, 2002: 5), usually the same people who are
politically active in offline politics. Van Dijk (2000: 182)
rightly maintains that the ‘biggest mistake’ usually made in that
domain is to presume that technology can ‘solve fundamental
problems of citizen participation’ while in reality this problem
has ‘deep social, cultural and mental roots’. Along the same
lines, Lax (2000: 165) affirms that there is no evidence that
cyber communities have any significant effect on politics in the
real world since many of them are ‘short-lived, with a flurry of
electronic activity for a while before falling out of favour with
participants’.

5. GENDERED TECHNOLOGY AND THE
LIMITATIONS OF ‘REVOLUTION’
MODEL:
Morrison and Svennevig (2001: 127) argue that the concept of a
revolution implies ‘a radical change in social organization […]
and a radical change in the way people lead their lives’. In this
light, the claim that new cultural structures are reinventing a
new order at the level of gender relations is exaggerated. In fact,
although women are catching up with men in terms of access to
the new ICTs, there are many indications that the type of use
and appropriation of these technologies is still shaped by
dominating cultural paradigms. In UK, for example, while the
number of girl students in higher education exceeds that of the
boys, the number of women studying IT courses is still very
low. In fact, the number of women studying IT and computing
has even fallen in recent years and represents only 18% of
overall students (Trayhurn, 2002: 93). This fact reflects a
cultural bias in society that considers IT and computing more
suitable to boys than to girls, as boys start using computers
from a young age (ibid: 96).

The differences between boys and girls as regards the use of the
internet also reflects established gender order in society. A
research study in UK revealed that while 50% of boys spend

 87

their time on the net downloading music and software, most
girls spend their time sending e-mails and using chat rooms
(Kirkup, 2002: 50). And in Canada, it was found that while
‘males are more interested in how technology works, women
are more interested in the place it occupies in the wider social
context’ (UNESCO, 2002: 26). Thus, existing cultural
structures that determine gender order in society are shaping the
use of the new technologies. Kirkup (2001: 46) rightly points
out that ‘gender is having a stronger impact on the social and
cultural production of technology’ than the reverse.

6. REAL VS. VIRTUAL: THE
PRODUCTION OF CULTURE IN THE
‘NETWORK SOCIETY’:
It is also equally difficult to believe that a radically new culture
is emerging from the interaction between the networks and
ICTs, on the one hand, and people and society, on the other.
Castells’ concept of ‘real virtuality’ proclaims a culture
disembodied from the local experience and rooted in the
timelessness of the computer networks (1998: 350). However,
the networks and the new media themselves are deeply rooted
in the time and place dimensions. Van Dijk (1999: 133)
observes that ‘nobody will deny the extreme relevance of
(clock) time in the most advanced nerve-centres of ICT- the
stock markets’, while the place remains crucial for the new
media as they will always depend on their ‘material, social,
physical and biological substructure or context’ (ibid: 134).

The culture reflected by the new media is also rooted in the
local experience and governed by the past, the present and the
future. By surveying some 4000 websites, Halavais (2000) finds
that the web conforms to traditional national borders. He points
out that ‘web sites are in most cases more likely to link to
another site hosted in the same country than to cross national
borders’ (ibid: 7). In fact, virtual communities themselves are
rooted in the social reality because ‘without real people and real
organizations, ‘virtual communities’ and ‘textual cyberspace’
would not exist’ (Selvin, 2000: 7). Indeed, the production of
culture, like the construction of identity, will continue to be
affected by the experience rooted in real life within the
dimension of real space and real time.

7. CONCLUSION
The notion of the information society is an attractive idea
because it seems to account for the many transformations taking
place in the world. However, it fails to demonstrate that these
transformations constitute a total break with the past, rather
than a continuation of it. Moreover, allocating a central role to
technology and networks as the principal actors in society
reflects an ideological stance that plays down the responsibility
of politicians on their decisions and people’s capacity to control
their destinies. Information technology and software will
continue to shape our lives, but the effect of technology itself is
determined by the way people interpret it, put it into use, and
weave it into the fabric of their social, political and cultural
structures.

8. REFERENCES
Castells, M. (1996) The Information Age:

Economy, Society and Culture, Vol. 1: The
Rise of the Network Society, Massachusetts
and Oxford: Blackwell.

 Castells, M (1997) The Information Age:
Economy, Society and Culture, Vol. 2: The
Power of Identity, Massachusetts and Oxford:
Blackwell.

Castells, M. (1998) The Information Age:
Economy, Society and Culture, Vol. 3: End of
Millennium, Massachusetts and Oxford:
Blackwell.

Castells, M. (2000) The Information Age:
Economy, Society and Culture, Vol. 1: The
Rise of the Network Society, Oxford; Malden
and Massachusetts: Blackwell Publishers.

Curran, J. and Seaton, J. (2003) Power without
Responsibility, London and new York:
Routledge.

Halavais, A. (2000) ‘National borders on the
world wide web’, New Media and Society,
Vol.2/1. London: Sage Publication.

Kirkup, (2001) ‘ Getting Our Hands On It:
Gendered Inequality In Access to Information
and Communication Technologies’ in S. Lax
(ed.) Access Denied In the Information Age,
Basingtoke: Palgrave.

Kumar, K. (2004) “From Post-Industrial to Post-
Modern Society”, in F. Webster (ed.) The
Information Society Reader, London:
Routledge.

Lax, S. (2001) “Information, Education and
Inequality: Is New Technology the
Solution?”, in S. Lax (ed.) Access Denied In
the Information Age, Basingtoke: Palgrave.

May, C. (2002) The Information Society: A
Sceptical View, Cambridge: Polity Press.

McQuail, D. (2000) McQuail’s Mass
Communication Theory, London, Thousand
Oaks and New Delhi: Sage Publications.

Morrison, D.E. and Svennevig, M. (2001) “The
Process of Change: An Empirical
Examination of the Uptake and Impact of
Technology”, in S. Lax (ed.) Access Denied
In the Information Age, Basingtoke: Palgrave.

Papacharissi, Z. (2002) ‘The Virtual Sphere: the
Internet as a public sphere’, New Media and
Society, Vol. 4/1. London: Sage.

Queau, P. (2000) ‘Who Owns Knowledge?’ in Le
Monde Diplomatique, at
http://mondediplo.com/2003/10/01media?var
_recherche=Ramonet%2B+2003 (Retrieved
on 12 February, 2004)

 88

http://mondediplo.com/2003/10/01media?var_recherche=Ramonet%2B+2003
http://mondediplo.com/2003/10/01media?var_recherche=Ramonet%2B+2003

UNESCO, (2002) ‘ Information, Communication
and Knowledge: Building Contemporary
Societies’, at
http://www.unesco.ca/english/Culture/Final_r
eport_En/Pages%201%20to%2020%20from
%20UNESCO_Report_Info_ENG2.pdf
(Retrieved on 12 February, 2004)

Ramonet, I. (2003)Ramonet ‘Set the Media Free’
in Le Monde Diplomatique, at
http://mondediplo.com/2003/10/01media?var
_recherche=Ramonet%2B+2003 (retrieved
on 16 February, 2004)

Robins, K. and Webster, F. (2004) “The Long
History of the Information Revolution”, in F.
Webster (ed.) The Information Society
Reader, London: Routledge.

 Van Dijk, J. (1999) “The One-dimensional
Network Society of Manual Castells”, New
Media and Society, Vol. 1/1, pp 127-138. Stehr, N. (2004) “The Economic Structure of

Knowledge Societies”, in F. Webster (ed.)
The Information Society Reader, London:
Routledge.

Van Dijk, J. and Hacker, K. (eds) (2000) Digital
Democracy: issues of theory and Practice,
Cambridge: Polity Press

Webster, F. (2002) Theories of the Information
Society, London: Routledge

Trayhurn, D. (2001) “Brickies or Bricoleurs?
Gender in Computing and Design Courses”,
in S. Lax (ed.) Access Denied In the
Information Age, Basingtoke: Palgrave.

 89

http://mondediplo.com/2003/10/01media?var_recherche=Ramonet%2B+2003
http://mondediplo.com/2003/10/01media?var_recherche=Ramonet%2B+2003
http://www.unesco.ca/english/Culture/Final_report_En/Pages%201%20to%2020%20from%20UNESCO_Report_Info_ENG2.pdf
http://www.unesco.ca/english/Culture/Final_report_En/Pages%201%20to%2020%20from%20UNESCO_Report_Info_ENG2.pdf
http://www.unesco.ca/english/Culture/Final_report_En/Pages%201%20to%2020%20from%20UNESCO_Report_Info_ENG2.pdf

	CUSEC Cover Page_Color.pdf
	CUSEC 2006_V16.pdf
	Binder1_all8_Bkup.pdf
	1_Forbrig_Task_Mode.doc
	1. INTRODUCTION
	2. MODEL-BASED DEVELOPMENT
	3. REMOTE USABILITY TESTING
	3.1 Software Architecture
	3.2 Tool Support for Remote Usability Tests

	4. SUMMARY AND OUTLOOK
	5. REFERENCES

	2_Pankaj__How_Useful_UML.doc
	1. INTRODUCTION AND BACKGROUND
	2. A UML PRAGMATIC QUALITY FRAMEWORK
	2.1 Feasibility Analysis
	2.2 Goal
	2.3 External Attributes
	2.4 Internal Attributes
	2.4.1 Secondary Notation
	2.4.2 Size
	2.4.3 Structure
	2.4.4 Representation Format

	2.5 Mechanisms
	2.5.1 Training in Secondary Notation
	2.5.2 Use of Metadata
	2.5.3 Pair Modeling
	2.5.4 Refactoring of UML Artifacts
	2.5.5 Inspections of UML Artifacts
	2.5.6 Metrics for UML
	2.5.7 Tool Support for Automation and Modeling

	3. CONCLUSION AND FUTURE WORK
	4. ACKNOWLEDGMENTS
	5. REFERENCES

	3_Commonalities.doc
	
	1. INTRODUCTION
	2. AGILE SOFTWARE DEVELOPMENT
	2.1 Highlights of Agile Development Philosophy
	2.2 Focus on an Agile Method
	2.2.1 Extreme Programming (XP)

	3. USER-CENTERED DESIGN PHILOSOPHY
	3.1 Highlights of the User-Centered Design Philosophy
	3.2 Focus on a Major UCD Method
	3.2.1 Scenario-Based Design

	4. DISCUSSION: COMMONALITIES AND DIFFERENCES
	5. WHEN TO USE WHAT? SUGGESTIONS FOR CHOOSING THE RIGHT METHOD
	Scenario 1: Agile methods
	Scenario 2: UCD methods
	Scenario 3: Mix of Agile and UCD

	5. CONCLUSIONS
	6. REFERENCES

	4_Engineering_the_Requirements.doc
	1. ABSTRACT
	2. Categories and Subject Descriptors
	3. General Terms
	4. Keywords
	1. INTRODUCTION
	1.1 An Overview of User-Centered Design Methodologies
	1.2 An Overview of Agile Methodologies
	2. REQUIREMENTS ENGINEERING IN USER-CENTERED DESIGN
	3. REQUIREMENTS ENGINEERING IN AGILE METHODOLOGIES
	4. FRAMEWORK SUPPORT FOR REQUIREMENTS ENGINEERING
	4.1 An Overview Of Sucre Framework
	5. CONCLUSION
	6. REFERENCES

	5_Tool_Support.doc
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	HCI
	INTRODUCTION
	RELATED WORK
	EXAMPLE OF A DEVELOPMENT PROCESS OF A USER INTERFACE
	Initial Task Model
	From Task Models to Dialog Graphs
	From Dialogue Graphs to Abstract Prototypes of User Interfaces
	From Abstract Prototypes to Concrete GUIs

	EVOLUTION OF MODEL
	 APPLYING A UI-PATTERN
	DEFINING A PATTERN INSTANCE AS COMPONENT
	CONCLUSION AND FURTHER WORK
	REFERENCES

	6_From_Requirements.doc
	1. INTRODUCTION
	2. RELATED WORK
	3. SYSTEM REQUIREMENTS ANALYSIS
	3.1 Statement of the Problem
	3.2 System Requirements
	3.3 Requirements Definition
	3.3.1 The User Context
	3.3.2 The User Profile
	3.3.3 The Machine Learning Process

	3.4 Modeling System Requirements

	4. ATTRIBUTE-DRIVEN ARCHITECTURAL DESIGN
	4.1 Quality Attributes and Attribute-dependent Scenarios
	4.2 Architectural Views
	In concept, a view is a representation of a coherent set of architectural elements. It consists of a representation of a set of elements or components and the relationship among them. In some literature, architectural view and structure are sometimes used interchangeably. For an architectural design to demonstrate the necessary information of the interested stakeholders, one architectural view is often not enough; there needs to be two or three (or more) so that the management, analyst, programmers, end user and customer could see, understand and appreciate the architectural design based on each one’s perspective.

	5. ARCHITECTURAL EVALUATION
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	7_Open_Source.doc
	1. INTRODUCTION AND BACKGROUND
	2. SEE AND OSS: SIMILARITIES AND DIFFERENCES
	2.1 Management
	2.2 Process
	2.3 Modeling/Specification
	2.4 Standards
	2.5 Documentation
	2.6 Quality

	3. INTRODUCING OSS IN SEE
	3.1 OSS for Pedagogy
	3.2 OSS for Learning
	3.3 OSS as CASE Tool
	3.4 OSS as Sub-System
	3.5 OSS for Reuse
	3.6 OSS Process Adoption

	4. CONCLUSION AND FUTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	8_Mousa_How_valid_is.doc
	1. INTRODUCTION
	2. THE POLITICAL ECONOMY OF THE INFORMATION SOCIETY:
	3. LIMITATIONS OF ‘INFORMATION ECONOMY’ MODEL:
	4. LIMITATIONS OF THE ELECTRONIC- DEMOCRACY MODEL:
	5. GENDERED TECHNOLOGY AND THE LIMITATIONS OF ‘REVOLUTION’ MODEL:
	6. REAL VS. VIRTUAL: THE PRODUCTION OF CULTURE IN THE ‘NETWORK SOCIETY’:
	7. CONCLUSION
	8. REFERENCES

