
Engineering High
Quality Software

Applications

Alan Wassyng

Presented at
CUSEC 2005

Software Quality  Research Laboratory
Department of Computing and Software

McMaster University

©Alan Wassyng 2005



1

Where we are
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Where we are - really
 Why was that funny?
 Yes - software quality is not what it should be
 BUT - we have already achieved outstanding

successes.  Software is pervasive and works
remarkably well much of the time

 We have seen humorous comparisons (usually with
cars) that present both sides of software progress:
 cars could be faster than a jet plane, smaller than a bicycle and

cost $2000 (new)
 changing the tires on a car would require removing the engine

(temporarily) - occasionally after such a change, the car may
refuse to turn right
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Engineering safety-critical software

 I’m going to tell you a story - not a fairy story
 A true story - maybe a legend even
 Embellished only slightly

 And - it’s a story with a happy ending
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Software Size

Shutdown System One

A single trip computer

60 modules
280 access programs
40,000 lines of code
(including comments)
    33,000 FORTRAN
    7,000 assembler
84 monitored variables
27 controlled variables
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Notation

 m_ name is a monitored variable, c_name
is a controlled variable, k_name is a
constant, e_name is an enumerated token
in a type, etc.

 m_name represents current value of the
variable

 m_name-1 represents “previous” value of
m_name
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Software Development
Lifecycle
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 Mathematically based
 A priority was that domain experts would be able to read

and understand all the details
 Integrated:

Requirements
Software Design

Design Verification
Code
Code Verification

 As few software design artefacts as possible
 Practical - must deal with real industrial applications

Requirements
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Tabular Expressions

res nCondition n
......   ...   ...

res 2Condition 2
res 1Condition 1

f_nameCondition

Result

If Condition 1 then f_name = res 1
Elseif Condition 2 then f_name = res 2
Elseif …
Elseif Condition n then f_name = res n
Condition i ∧ Condition j ⇔ FALSE ∀i,j = 1,..,n, i ≠ j
Condition 1 ∨ Condition 2 ∨ … ∨ Condition n ⇔ TRUE

and
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Requirements - SDS1
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Requirements - NOP Trip 1

18 signals (sensors)
18 sensor trips

parameter trip

inputs

outputs
internal functions
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Requirements Model

 Finite State Machine (FSM) Model
 C(t) - vector of values of controlled variables at time t
 M(t) - vector of values of monitored variables at time t
 S(t) - vector of values of state variables at time t
 t0 - time of initialisation
 S(t0) must be known

C(tk) = R(M(tk), S(tk))
S(tk+1) = NS(M(tk), S(tk)),                k=0,1,2,3,...
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Requirements - NOP Trip 2

2.1.3.9.1 Neutron Overpower Parameter Trip

2.1.3.9.1.1 Inputs/Natural Language Expressions

Input NL Expression Reference

f_NOPsentripi, i=1,..,18 - 2.1.3.9.2.4

2.1.3.9.1.2 c_NOPparmtrip

Result

Condition c_NOPparmtrip

Any (i ! 1,..,18) (f_NOPsentripi = e_Trip)
{Any NOP sensor is tripped}

e_Trip

All (i = 1,..,18) (f_NOPsentripi = e_NotTrip)
{All NOP sensors are not tripped}

e_NotTrip
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Requirements - NOP Trip 3
2.1.3.9.2 Neutron Overpower Sensor Trips 

Determines whether there is an NOP sensor trip, which is used to determine whether there 

is an associated parameter trip. 

2.1.3.9.2.1  Inputs/Natural Language Expressions 
 

Input NL Expression Reference 

f_NOPsp - 2.1.3.9.3.3 

f_NOPGaini, i=1,..,18, 

k_CalNOPHiLimit, 

k_CalNOPLoLimit, 

k_NOPOffset, 

m_NOPaii, i=1,..,18 

Calibrated i
th

 NOP signal, i=1,..,18 2.1.4.12 

2.1.3.9.2.4  f_NOPsentripi, i=1,..,18 
{For each i = 1,..,18} 

Result 

Condition f_NOPsentripi 

f_NOPsp !  Calibrated i
th
 NOP signal 

{Calibrated NOP signali is now in the trip region} 
e_Trip 

f_NOPsp - k_NOPhys < Calibrated i
th
 NOP signal < f_NOPsp 

{Calibrated NOP signali is now in the deadband region} 
No Change 

Calibrated i
th

 NOP signal ! f_NOPsp - k_NOPhys 

{Calibrated NOP signali is now in the non-trip region} 
e_NotTrip 
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Requirements - NOP Trip 3
2.1.3.9.2 Neutron Overpower Sensor Trips 

Determines whether there is an NOP sensor trip, which is used to determine whether there 

is an associated parameter trip. 

2.1.3.9.2.1  Inputs/Natural Language Expressions 
 

Input NL Expression Reference 

f_NOPsp - 2.1.3.9.3.3 

f_NOPGaini, i=1,..,18, 

k_CalNOPHiLimit, 

k_CalNOPLoLimit, 

k_NOPOffset, 

m_NOPaii, i=1,..,18 

Calibrated i
th

 NOP signal, i=1,..,18 2.1.4.12 

2.1.3.9.2.4  f_NOPsentripi, i=1,..,18 
{For each i = 1,..,18} 

Result 

Condition f_NOPsentripi 

f_NOPsp !  Calibrated i
th
 NOP signal 

{Calibrated NOP signali is now in the trip region} 
e_Trip 

f_NOPsp - k_NOPhys < Calibrated i
th
 NOP signal < f_NOPsp 

{Calibrated NOP signali is now in the deadband region} 
No Change 

Calibrated i
th

 NOP signal ! f_NOPsp - k_NOPhys 

{Calibrated NOP signali is now in the non-trip region} 
e_NotTrip 

 

Calibrated 4th

NOP signal

f_NOPsp
k_NOPhys

TRIP REGION

NON-TRIP REGION

NON-TRIP REGION
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Requirements - NOP Trip 4
2.1.3.9.3.3  f_NOPsp 

 Result 

Condition 
f_NOPsp 

NOP Low Power setpoint is requested k_NOPLPsp 

NOP Low Power setpoint is cancelled 

& 

NOP Abnormal 2 setpoint is requested 

k_NOPAbn2sp 

NOP Low Power setpoint is cancelled 

& 

NOP Abnormal 2 setpoint is cancelled 

& 

NOP Abnormal 1 setpoint is requested 

k_NOPAbn1sp 

NOP Low Power setpoint is cancelled 

& 

NOP Abnormal 2 setpoint is cancelled 

& 

NOP Abnormal 1 setpoint is cancelled 

k_NOPnormsp 

 

k_NOPLPsp ! k_NOPAbn2sp ! k_NOPAbn1sp ! k_NOPnormsp 

and
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Requirements - NOP Trip 5

 

2.1.4.40.4  Definition 
 Result 

Condition 

NOP Abnormal 1 setpoint is 

requested or cancelled 

f_NOPspAbn1ON = e_pbStuck OR 

f_NOPspAbn1OFF = e_pbStuck 
requested 

f_NOPspAbn1ON = e_pbNotDebounced & 

f_NOPspAbn1OFF = e_pbNotDebounced 
No Change 

f_NOPspAbn1ON = e_pbNotDebounced & 

f_NOPspAbn1OFF = e_pbDebounced 
cancelled 

f_NOPspAbn1ON = e_pbDebounced & 

f_NOPspAbn1OFF = e_pbNotDebounced 
requested 

f_NOPspAbn1ON = e_pbDebounced & 

f_NOPspAbn1OFF = e_pbDebounced 
requested 
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Tolerances

 Tolerances & Timing Requirements
 Requirements model/document describes behaviour

of an idealised system - impossible to meet
 Need tolerances in general
 Need timing tolerances in particular
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Timing Resolution

TR

TR TR
setpoint

m_signal

timeTR for time continuous monitored variables

TRs for time discrete monitored variables time

TR

M_signal
M_signal

M_signal

M_signal

An event that
lasts for TR
or longer
must be
detected

Two events
at least TR
apart must
both be
detected
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Performance
Timing Requirements

time

c_SomeTrip

e_Trip

e_NotTrip

Cond(m_signal)

F

T

m_signal

k_setpoint

PTR

The PTR for a m-c
pair specifies an
allowable processing
delay
The PTR is
measured from the
time that the value of
m crosses the system
boundary until the
time that the value of
c crosses the system
boundary

sampled here
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Timing Issues

 My main research interest is to cope with
timing issues
 What if time constants have tolerances?
 How do performance timing issues and functional

timing issues interact?
 Unfortunately, it appears that existing theory does

not cope adequately with these problems!
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Lesson 1

 Precision of mathematical
requirements acted as a catalyst for
probing questions from domain experts
at an early stage of development.
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Lesson 2

 Mathematical precision builds a false
sense of confidence.
 Differences in the interpretation of the

model can lead different readers of the
requirements to different interpretations of
the requirements!

 The math may be precise, but readers may
still read it incorrectly.



24

Software Design

 The software design is decomposed for
different reasons compared with the
requirements

 Decompose for maintainability as a primary
concern - Information Hiding!

 “secrets” are identified from changes that are
predicted to be likely to occur. Each secret is
hidden in a module, so the implementation of
the module can be changed without affecting
other modules Parnas, D.: On the criteria to be used in

decomposing systems into modules.
Communications of the ACM December (1972),
1053-1058



25
Hardware Hiding Behaviour Hiding Software Decisions

Application

Modules

code is in leaf
modules only

A module is a
conceptual design
unit in the
decomposition of
software functionality.

Modules can be
developed in a
hierarchical structure
where one module
can “contain” other
modules.

Leaf modules communicate
through externally visible
access programs.

Top level
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“Rational Design Process”

 Parnas talked about a “rational design
process” - we set out to implement such a
process

 Major components
 Module Guide

 For each module - secret, responsibility
 Module Interface Specification

 External description of module interface behaviour
 Module Internal Design

 Details of how each module implements its interface
specification
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Documentation of Modules

Module Cover Page

Module Name & Number
Responsibility

Export Constants
Export Types

Access Program 1 Name
Parameters
Description
References

...
Access Program n Name

Parameters
Description
References

Module Internal Declarations

Internal Constants
Internal Types

State Data

System Inputs
System Outputs

Local Program 1 Name
Parameters
Description
References

...
Local Program m Name

Parameters
Description
References

Program 1 Name

Program 2 Name

Program n+m Name

...
Interface design team

Available to all designers

Defines design tasks for

module designers

Module design team

Available to module designers

Individual designers

Module
Interface

Spec

Module
Internal
Design
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Module Interface Specification
 Traditionally, researchers have looked for ways of

making this specification as “black-box” as possible,
and have approached the problem without thinking
enough about the previous phase - the requirements

 If we assume we have mathematical requirements,
then those requirements should be useful for the MIS

 Problems:
 Software variables are different from domain variables
 Software design decomposition is different from requirements

decomposition
 So - try and solve those problems and then we have

a more integrated methodology!
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Modified 4 Variable Model
 Are the software

variables really
different from the
domain variables as
far as the MIS is
concerned?

Hardware
hiding

Hardware
hiding

variables functions

Parnas, D.L., Madey, J.: Functional
documents for computer systems.
Science of Computer Programming,
25, (1995), 41-61
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Modified 4 Variable Model
 Are the software

variables really
different from the
domain variables as
far as the MIS is
concerned?

 Not if we look at the
modified 4 variable
model - which is what
developers normally
choose to implement
anyway

variables functions

Hardware
hiding

Hardware
hiding

Parnas, D.L., Madey, J.: Functional
documents for computer systems.
Science of Computer Programming,
25, (1995), 41-61
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MIS Example

Provide spec for access program

*

*
Needs to be more specific
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MIS Example - NOP
4.23 MODULE NPParTrip 

Provides the current NOP parameter trip status to drive the NOP parameter trip output.  

 Name Value Type 

Constants: (None)   

 
 Name Definition 

Types: (None)  

Access Programs: 

EPTNP 

Determines the current NOP parameter trip status and posts the parameter trip output state to 

DigitalOutput module.   

References:  c _ N OPparmtr ip  

GPTSNP 

r e tu rn :  t _boo lean  

Returns the current NOP parameter trip status.  A return value of $TRUE or $FALSE indicates 
that the parameter is tripped or not tripped respectively. 

References: c _ N OPparmtr ip  

IPTNP 

Initializes all the NPParTrip module internal states. 
References: Initial Value: NPParTrip  

 

Module 
“cover page”
(MIS)
shows 
external
behaviour
only.
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MID Example - NOP
ACCESS PROGRAM EPTNP 

 

 Name Ext_value Type Origin 

Inputs: l_ST GSTNP(l_ST) ARRAY 1 TO 
KNUMNP OF 
t_boolean 

NPSnrTrip 

 
 Name Ext_value Type Origin 

Updates: (None)    
 
 Name Ext_value Type Origin 

Outputs: l_TrpDO SDONP(l_TrpDO) t_boolean DigitalOutput 
 PTSNP - t_boolean State 
 

Local Terms: 

l_NoSTrp (ALL i=1..KNUMNP)(l_ST[i] = $FALSE) 

 
VCT: EPTNP 

 l_NoSTrp NOT(l_NoSTrp) 

l_TrpDO $FALSE $TRUE 

PTSNP $FALSE $TRUE 

 

safe state
if there is one
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Software Design Verification

 Assumes we use “supplementary function
tables” in the design documentation
 Verify software design against pseudo-requirements -

have same data flow topology
 Verify pseudo-requirements against requirements -

only need to verify those blocks that are different
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pseudo - TCDD

SDD

REQp
M

IN

I

SOF
in

Mp

C

O

Cp

OUT

SOF
out

SOF
req

Abst 
m

Abst 
c

Path 1

Path 2

Software Design Verification

Proof obligation (general form)

Result via path 1 must
equal result via path 2

REQp(M) =
   Abstc

-1(SOFreq(Abstm(M)))

Abstm(M) = SOFin(IN(M))

C = OUT(SOFout(Abstc(C)))

Path 1

Path 2

and

pseudo-requirements

software
design
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Verification Abstract Example

       Choose an arbitrary example:

software design

pseudo-requirements
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Example: Proof Obligation

The complete proof obligation for our example evaluates to:

f4(f2(f1(m1, m2)), f3(f1(m1, m2), m2)) =
   Abstc 1

-1(g4(g2(g1(Abstm 1(m1), Abstm 2(m2))),
                  g3(g1(Abstm 1(m1), Abstm 2(m2)), Abstm 2(m2))))                                ... (1)

f3(f1(m1, m2), m2) = Abstc 2
-1(g3(g1(Abstm 1(m1), Abstm 2(m2)), Abstm 2(m2)))     ... (2)
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Verification Piece-Wise

Block 2 Block 3

Block 4 (everything else)
software design

pseudo-requirements

Block 1
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Software Design Verification
Process

 So, our procedure is to divide the software design
and the pseudo-requirements into blocks such that
each block in the design has identical inputs and
outputs to a corresponding block in the pseudo-
requirements

 Each block is verified individually, usually by
manipulating function tables.  We have also
managed to implement more automated block
verifications using PVS (so far, only relatively
simple blocks)

 Afterwards we deal with the pseudo-requirements
to requirements verification, and the
monitored/controlled variable abstractions
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Software Design Verification -
Still Tough!

Chk
Link

Rx
Rdy

WD
Test

NOP
Data

HTF
Data

HTF
Gains

P1 Chk
Rx

P2

E2

E3

E4

E5

E6

E1

E37

S1

S2 S3

S5

S6

S10

S12

S16

S4

S18

Rx
Init

Process Message

Lnk
Off

Part
Msg

No
Msg

Lnk
Init

Restrt
HPX

Inv
Pt Ms Hdr

Bad

S19

S21

S22

S20 S24

S25
S26

E7

E20

E21

E22

E23

E24

E25

E27

E28

E31

E32

E33

E34

E35

E36

NOP
Gains

NO
HTF

S17

No
NOP

S11

Tent
NOP

S7

NOP
Rng

S8

NOP
Inv

S9

Tent
HTF

S13

HTF
Rng

S14

HTF
Inv

S15

E8

E9

E10

E11

E13

E14

E12

E15

E16

E17

E18

E19

Any
New
Gns

S23

E26

E29
E30

Rx
Idle

Waiting for Msg

Waiting for

rest of Msg

Process Msg

Receive Idle

requirements

software
design
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Coding

 Coding is pleasantly simple since each
module internal design is very complete

 Most designs are in the form of tabular
expressions (some are psuedo-code), and
coding guidelines are quite easy to create
and very effective in helping to produce well
structured code
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MID Example - NOP
ACCESS PROGRAM EPTNP 

 

 Name Ext_value Type Origin 

Inputs: l_ST GSTNP(l_ST) ARRAY 1 TO 
KNUMNP OF 
t_boolean 

NPSnrTrip 

 
 Name Ext_value Type Origin 

Updates: (None)    
 
 Name Ext_value Type Origin 

Outputs: l_TrpDO SDONP(l_TrpDO) t_boolean DigitalOutput 
 PTSNP - t_boolean State 
 

Local Terms: 

l_NoSTrp (ALL i=1..KNUMNP)(l_ST[i] = $FALSE) 

 
VCT: EPTNP 

 l_NoSTrp NOT(l_NoSTrp) 

l_TrpDO $FALSE $TRUE 

PTSNP $FALSE $TRUE 

 

safe state
if there is one
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Coding Example - NOP
. . . . . 
C     Variable initialization. 
C     < SDD output: l_TrpDO > 
      LLTRPD = $TRUE 
      PTSNP = $TRUE 
C --- < VCT EPTNP > --------------------------------------- 
      IF (.NOT. ((LLST(1) .EQ. $FALSE) .AND. 
     +   (LLST(2)  .EQ. $FALSE) .AND. (LLST(3)  .EQ. $FALSE) .AND. 
     +   (LLST(4)  .EQ. $FALSE) .AND. (LLST(5)  .EQ. $FALSE) .AND. 
     +   (LLST(6)  .EQ. $FALSE) .AND. (LLST(7)  .EQ. $FALSE) .AND. 
     +   (LLST(8)  .EQ. $FALSE) .AND. (LLST(9)  .EQ. $FALSE) .AND. 
     +   (LLST(10) .EQ. $FALSE) .AND. (LLST(11) .EQ. $FALSE) .AND. 
     +   (LLST(12) .EQ. $FALSE) .AND. (LLST(13) .EQ. $FALSE) .AND. 
     +   (LLST(14) .EQ. $FALSE) .AND. (LLST(15) .EQ. $FALSE) .AND. 
     +   (LLST(16) .EQ. $FALSE) .AND. (LLST(17) .EQ. $FALSE) .AND. 
     +   (LLST(18) .EQ. $FALSE))) GO TO 20000 
C     < l_NoSTrp > 
C     See RANGE-CHECK NOTE (1.a) 
C        < SDD output: l_TrpDO > 
         LLTRPD = $FALSE 
         PTSNP  = $FALSE 
         GO TO 29999 

 

comments are used
to reference software
design

all function tables are 
implemented in a consistent 
column order etc
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Coding Example - NOP cont.
20000 CONTINUE 
C     Range check on <l_ST> 
C     See RANGE-CHECK NOTE (2.a) 
      IF (.NOT.((LLST(1) .EQ. $TRUE) .OR. 
     +    (LLST(2)  .EQ. $TRUE) .OR. (LLST(3)  .EQ. $TRUE) .OR. 
     +    (LLST(4)  .EQ. $TRUE) .OR. (LLST(5)  .EQ. $TRUE) .OR. 
     +    (LLST(6)  .EQ. $TRUE) .OR. (LLST(7)  .EQ. $TRUE) .OR. 
     +    (LLST(8)  .EQ. $TRUE) .OR. (LLST(9)  .EQ. $TRUE) .OR. 
     +    (LLST(10) .EQ. $TRUE) .OR. (LLST(11) .EQ. $TRUE) .OR. 
     +    (LLST(12) .EQ. $TRUE) .OR. (LLST(13) .EQ. $TRUE) .OR. 
     +    (LLST(14) .EQ. $TRUE) .OR. (LLST(15) .EQ. $TRUE) .OR. 
     +    (LLST(16) .EQ. $TRUE) .OR. (LLST(17) .EQ. $TRUE) .OR. 
     +    (LLST(18) .EQ. $TRUE))) GO TO 29998 
C     < NOT(l_NoSTrp) > 
         GO TO 29999 
29998 CONTINUE 
C     See RANGE-CHECK NOTE (2.b) 
C        ErrorHdler.SFAT($FERNG, KPLN) 
         CALL SFAT($FERNG, KPLN) 
29999 CONTINUE 
C --- < END VCT EPTNP > ----------------------------------- 
C     < SDD output call: DigitalOutput.SDONP(l_TrpDO) > 
      CALL SDONP(LLTRPD) 
. . . . . 
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Code / Code Verification
Linkage
 A couple of decisions were made in the

coding procedure that make code verification
much simpler
 Comments in the code act as references to the

software design, so the verifier knows if the code
was produced from a table or from pseudo-code
(crucial)

 The coding procedure is very precise and quite
prescriptive in how to produce code from tables and
pseudo-code.  This means the verifier has a good
idea of how to produce a table or pseudo-code from
the code so that it has a very similar format to the
software design
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Code Verification

 Process is quite simple
 For each module, the verifier constructs

documentation that is very similar to the software
design, but does it by analysing the code without
referring to the software design

 Then the verifier compares the resulting
documentation with the software design

 Coding verification was a pleasant surprise -
much easier than anticipated
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Testing

 Our philosophy is that no one method will
detect all faults - so, even though we do all
the reviews and mathematical verifications,
we also do: unit testing, software integration
testing, validation testing, trajectory-based
random testing

 Function tables provide an excellent basis
for test cases - they obviously describe
boundaries very well
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Lesson 3

 Software tool support for these methods is
mandatory.  The tools should work
seamlessly over all the processes in the
software development lifecycle

 Integrated tools will come from integrated
methods - so first priority is to make the
methods as integrated as possible

 Often, mundane repetitive tasks can be
automated with a lot less effort than the
more theoretically interesting tasks
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Lesson 4

 Mathematicians have been known to make
mistakes.  We should not rely on the
formality of our approaches to the extent that
we throw away years of experience and so
forego normal “best practices”, such as
accepted coding principles for the language
in use, and (manual) inspections
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End of story

 This story is important because:
 It consumed 13 years of my life
 We learned many valuable lessons (I only

highlighted a very few) - valuable to many software
developers

 It is one of only a handful of successful safety-
critical software developments in a real industrial
setting
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Why the world needs you

 Contrary to current enrollment numbers,
there is a shortage of qualified software
professionals

 You can help change the norm - less
hacking more rigor and discipline.  That does
not (necessarily) discard agile methods

 Don’t accept development cycles that skimp
on requirements, rationale, design - take
pride in your work and responsibility for your
professional conduct
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What we expect of you

 As software ENGINEERS
 Competency in your activities related to software

 A disciplined, engineering approach to software
development and maintenance

 Responsible

 Ethical

 For your own sakes - go out and do
something you enjoy!  Have fun!
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Thanks


